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ABSTRACT 

 
A comprehensive study of magnetic properties of two different families of low-dimensional 
compounds exhibiting spin gap is presented in this Thesis. The emphasis is put on two recently 
discovered systems, the one-dimensional Haldane system PbNi2V2O8 and the two-dimensional 
orthogonal dimer system SrCu2(BO3)2. The ground state, low-energy excited states, as well as 
the effect of doping and magnetic anisotropy on the magnetism of these two systems is 
investigated via magnetic resonance measurements. The proposed picture of the dominant 
magnetic anisotropy in the Haldane system PbNi2V2O8 is improved on the basis of X-band 
electron spin resonance (ESR) and symmetry arguments. Additionally, the 51V nuclear magnetic 
resonance (NMR) designates the VO4 tetrahedra as exchange bridges for relatively strong 
interchain exchange in the PbNi2V2O8 system. Similarly, the X-band ESR linewidth anisotropy 
of the SrCu2(BO3)2 single crystal allows accurate determination of the major magnetic 
anisotropy contributions in this system. In addition to the well-accepted interdimer 
Dzyaloshinsky-Moriya coupling, the intradimer components are quantitatively evaluated and 
shown to be substantial. The pattern of the Dzyaloshinsky-Moriya vectors is constructed using 
the symmetry operations of the corresponding space group. Second, the doping effect on the 
spin-singlet ground states of both parent materials is studied. The impurity substitutional doping 
of the PbNi2V2O8 compound on Ni2+ magnetic sites is consistent with the valence-bond-solid 
model, which predicts liberated 21=S  end-chain spins. These spins are shown to be strongly 
ferromagnetically coupled. Besides, by comparing the magnetic resonance results of the Mg-
doped and Co-doped compounds, also the spin nature of the dopants is found to have a 
pronounced effect on the development of the low-temperature spin correlations. On the other 
hand, doping of the SrCu2(BO3)2 system seems to be much more difficult task. In this respect, 
the results on the Li-intercalation are rather contradictory, but the general conclusion could be 
that the spin gap is much more robust in this compound. 
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POVZETEK 

 
Ta disertacija vključuje podrobno študijo magnetnih lastnosti dveh različnih družin nižje-
dimenzionalnih spojin s spinsko energijsko režo. Pod drobnogled sta vzeta dva nedavno odkrita 
sistema, enodimenzionalni Haldaneov sistem PbNi2V2O8 in dvodimenzionalni sistem 
ortogonalnih dimerov SrCu2(BO3)2. Značilnosti osnovnega stanje in nizkoležečih vzbujenih 
stanj ter efekt dopiranja in magnetne anizotropije na magnetizem omenjenih sistemov smo 
preučevali s pomočjo magnetno-resonančnih spektroskopskih metod. Veljavna slika oblike 
dominantnega člena magnetne anizotropije v Haldaneovem sistemu PbNi2V2O8 je nadgrajena s 
pomočjo rezultatov meritev elektronske spinske resonance (ESR) v področju X in uporabo 
simetrijskih argumentov. Meritve jedrske magnetne resonance (NMR) na jedrih 51V omogočajo 
označitev VO4 tetraedrov kot mediatorjev relativno močne izmenjalne sklopitve med verigami v 
sistemu PbNi2V2O8. Podobno v sistemu SrCu2(BO3)2 meritve širine absorpcijskih spektrov ESR 
dovoljujejo natančno določitev dominantnih členov magnetne anizotropije v tem sistemu. Poleg 
že uveljavljene interdimerne interakcije Dzyaloshinsky-Moriya je ocenjena tudi velikost 
intradimerne interakcije, katere velikost je znatna. Dodatno je na podlagi simetrijskih operacij 
prostorske grupe kristala SrCu2(BO3)2 izdelan še vzorec vektorjev Dzyaloshinsky-Moriya. 
Nadaljnji predmet raziskave je vpliv dopiranja na osnovno singletno stanje obeh sistemov. 
Substitucijsko dopiranje z nečistočami na mestih ionov Ni2+ v spojini PbNi2V2O8 je v skladu s 
tako imenovanim modelov “valence-bond solid”, ki napoveduje nastanek prostih spinov 

21=S  ob nečistočah. Rezultati meritev kažejo, da so inducirani spini močno feromagnetno 
sklopljeni. Dodatna primerjava magnetno-resonančnih rezultatov med spojinami dopiranimi z 
magnezijem in s kobaltom pokaže, da ima na razvoj nizkotemperaturnih spinskih korelacij 
bistven vpliv tudi spinska narava dopantov. V nasprotju s sistemom PbNi2V2O8 je dopiranje 
spojine SrCu2(BO3)2 precej bolj zahtevno. Rezultati interkalacije litija v to spojino se zdijo 
nekoliko kontradiktorni, vendar pa bi v splošnem lahko zaključili, da je spinska energijska reža 
v tem spinskem sistemu mnogo bolj obstojna. 
 
 
Ključne besede: spinska tekočina, Haldaneovo stanje z energijsko režo, dimerno stanje z 
energijsko režo, antiferomagnetizem kot posledica spinskih nečistoč, elektronska spinska 
resonanca, jedrska magnetna resonanca, interakcija Dzyaloshinsky-Moriya, anizotropija na 
posameznem mestu 
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1 INTRODUCTION TO SPIN-GAP SYSTEMS 

 
1.1 Magnetism in Lower Dimensions 

 
Low-dimensional quantum magnetic systems have been receiving considerable attention in the 
last two decades. Enhanced experimental and theoretical efforts were triggered by the discovery 
of superconductivity in two-dimensional cuprates [1], since the parent cuprate insulators are 
now considered the best examples of planar spin 21=S  antiferromagnets with isotropic and 
predominantly nearest-neighbor exchange interaction. The pseudogap, which manifests itself as 
a partial suppression of the excitation spectrum corresponding to a transfer of spectral weight of 
magnetic excitations from low to higher energy in underdoped high-temperature 
superconductors in the normal phase below a characteristic temperature, as well as 
antiferromagnetic fluctuations have been observed [2]. Their interconnections with the tendency 
of copper pairing in the superconducting phase have been at the heart of the debates in the last 
decade. Different experimental techniques were successful in observing these phenomena 
among which are also NMR spectroscopy [2, 3] and interlayer tunneling resistivity experiments 
[4]. These experiments indicate the predominant role of the spin over the orbital degrees of 
freedom in the formation of the pseudogap. For this reason, also the magnetism of other low-
dimensional antiferromagnets exhibiting an energy gap in their excitation spectrum, attributed 
to the spin system, is of special interest. One can then waggishly remark that the fascinating 
field of copper oxides, vanadates, and nickelates opened up merely as a side product of the two-
dimensional superconducting cuprates. However, the investigation of a reach assortment of the 
fundamental magnetic phenomena appearing in these systems has also an appeal of its own. 
 On the other hand, the early development of a coherent theory of magnetism in one 
dimension is dating back to the first half of the previous century and is strongly correlated to the 
progress in the field of quantum mechanics. This is due to the fact that linear spin chains often 
allow analytical and numerical solutions whereas this is usually not the case in higher 
dimensions. Another strong aspect enabling a blossom of the field of low dimensional 
magnetism that one encounters nowadays, is the prominent development of the solid-state 
chemistry, which is now able of tailoring various “exotic” systems with peculiar as well as 
potentially technologically useful magnetic properties. There are numerous experimental and 
theoretical reports on the topics of the magnetism in lower dimensions recently published in the 
literature. Comprehensive reviews of the present state of affairs are for instance provided by 
Lemmens et al. [5] and Katsumata [6]. 
 The low-energy excitations are frequently due to spin degrees of freedom. In such 
systems the magnetic properties can often be described by the Heisenberg exchange 
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Hamiltonian. The route to low-dimensional magnetism is paved by one of the two building 
principles potentially responsible for the reduction of the spin dimension from the three-
dimensional physical space. The first one is due to enlarged distances of missing bridging ions 
(most often the oxygen ions) corresponding to a particular direction or even two directions 
within the crystal structure. Second, the Kanamori-Goodenough superexchange rules yield 
vanishing antiferromagnetic exchange in the case when the two interacting magnetic moments 
define the right angle with the bridging oxygen ion [7, 8]. Compounds that incorporate these 
structural aspects exhibit a number of unusual magnetic properties that are related to strong 
quantum fluctuations. They can be characterized by strong electronic correlations controlled by 
the exchange parameters, exchange topology and a possible presence of spin impurities. 
 To begin with the magnetism in lower dimension let us first highlight the magnetic 
properties of the simplest and relatively well-understood Heisenberg system. This is a uniform 

21=S  spin chain with only nearest-neighbor antiferromagnetic exchange coupling. The 
solution of this problem dates to a distant history of quantum mechanics. Already in 1931 Bethe 
came to the conclusions that the ground state is a many-body spin singlet state, that it has no 
energy gap to the excited states and that the spin correlations decay slowly as a power low of 
distance [9]. Anderson described the ground state as a superposition of all possible singlet 
pairings of the chain, which is known as the resonating valence-bond state [10]. Assuming 
negligible spin anisotropy and interchain interactions the ground state remains nonmagnetically 
ordered even at zero temperature. Due to the delocalized nature of singlet pairs, the excitations 
to the triplet state become gapless. The lowest-lying spinon excitations were rigorously 
calculated to have the dispersion relation of the form ( ) ( ) kJkE sin2π= , with k as a 
normalized wave vector along the chains [11]. Since the latter expression resembles the 
classical spin-wave dispersion ( ) kJkE sin= , it was assumed for a long time that the 
Heisenberg model with larger spin value smoothly converges to the classical case. 
 However, contrary to this expectation, Haldane’s conjecture in 1983 that the ground 
states of the Heisenberg spin chains strongly depend on the value of the spin came out rather as 
a surprise [12, 13]. Namely, if the chain consists of half-integer spins it should exhibit quasi-
long-range order as in the case of 21=S  spins. Any slight perturbation such as a marginal 
interchain coupling or magnetic anisotropy will decrease quantum fluctuations, which act 
opposite to magnetic ordering, and thus a long-range ordered ground state will be restored. On 
the contrary, integer-spin systems show true short-range order in their ground state with the spin 
correlation functions decaying exponentially. Moreover, ground state is robust to external 
perturbations to a relatively high extent. This is due to an energy gap (Haldane gap) between the 
ground state and the lowest-lying excited state present in the excitation spectrum of an integer-
spin system, which is not the case with half-integer spin systems [13]. As the gap originates 
from spin degrees of freedom, it is conventionally called a spin gap. 
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1.2 Origin of the Energy Gap in Magnetic Excitation Spectrum 

 
Although the detailed structures of the ground states of the systems exhibiting spin gap differ, 
they share an important concept, namely, the singlet formation of pairs of spins. For an 
antiferromagnetically coupled pair of localized 21=S  spins, the quantum mechanical ground 
state is the well-known antisymmetric combination of the Néel states, ( ) 2

 
↓↑−↑↓ , which 

does not have a classical counterpart. However, in macroscopic spin systems the pair formation 
becomes more difficult since each spin has in general several nearest neighbors. Consequently, 
most macroscopic spin systems with translational symmetry exhibit Néel order at low 
temperatures, attributed also to a presence of spin anisotropies as discussed below. However, 
some of them still prefer a ground state based on the singlet pair formation. 
 The central concept of describing these low-dimensional quantum spin systems is that of 
a spin liquid. The ground state is nonmagnetic and highly disordered. It is characterized by the 
absence of the long-range magnetic order, which is due to strong quantum fluctuations. In this 
respect the 21=S  Heisenberg spin chain is regularly addressed as the critical spin liquid due to 
the algebraic decay of spin correlations. The spin gap in one and two dimensions can be 
attributed to the integer nature of spins, a special exchange topology, frustration of the 
underlying spin lattice or dimerization, which is the consequence of a broken translational 
symmetry. 
 

1.2.1 Overview of Spin-Gap Systems in One Dimension 

 
Spin-Peierls Transition and Alternating Exchange 

 
In one dimension many different systems are known to exhibit the spin gap in their excitation 
spectrum. The origin of the spin-gap behavior in spin-Peierls systems is a lattice dimerization, 
which may set-in in the case of soft lattices in the direction of the chains and if the chains are 
well magnetically separated. The phase transition from the uniform to the dimerized spin chains 
at a finite temperature is characterized by alternating deformation of the spin chains, which is 
also the origin of the alternating exchange coupling as presented in Fig. 1.1. Although the 
dimerization increases the elastic energy of the underlying lattice, the transition may still be 
possible if the singlet pair formation compensates for the energy increase. The ground state 
structure of the spin-Peierls system is thus a stacking of spin-singlet pairs. 
 The first experimentally observed spin-Peierls systems were organic compounds [14, 15], 
however, the discovery of such transition also in inorganic CuGeO3 compound [16] and NaV2O5 
spin system [17] expanded the horizons of this field. This is mainly a consequence of the 
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availability of large single crystals of considerable quality in case of inorganic spin-Peierls 
compounds due to their high thermal stability with respect to the organic systems. Second, 
doping of inorganic compounds, to be addressed in the next subsection, is also more feasible.  
 A similar structure to that of a spin-Peierls ground state is observed if a “static” 
alternation of the exchange is intrinsically provided by the crystal structure itself. The case of 
temperature-independent alternating exchange on linear chains was, for instance, observed in 
Cu(NO3)2·2.5 H2O system [18] and also recently recognized in the (VO)2P2O7 compound [19], 
which was for a long time mistreated as a spin ladder system. 
 

Competing Antiferromagnetic Interactions  

 
The next possible mechanism leading to spin-gap behavior in one dimension is sufficient 
frustration due to next-nearest-neighbor antiferromagnetic exchange interaction. It was shown 
by Majumdar and Ghosh that when the next-nearest exchange accounts for exactly half of the 
nearest-neighbor exchange, the Heisenberg model is exactly solvable and has a two-fold 
degenerated singlet ground state [20]. This solution was recently used also as a guide for 
constructing various more or less artificial spin Hamiltonians with the spin-liquid ground state 
and gapped magnetic excitations [21].  
 

Haldane chains 

 
All the above-presented mechanisms have geometrical reasons for two particular spins to form 
the singlet bond. However, in the case of S = 1 spin chains, the origin of the spin-gap character 
of the ground state lies in the integer spin value. As initially conjectured by Haldane [13], the 
integer spin systems exhibit a singlet ground state. Currently the best and also well-established 
approximation of the ground state of a realistic 1=S  spin chain is the one given by Affleck et 

Fig. 1.1: (a) Spin S = 1/2 chain with the uniform antiferromagnetic exchange coupling.
(b) The “singlet” ground state of the dimerized lattice below the spin-Peierls transition,
which is the origin of the alternation of the exchange interaction. 

(a)

(b)

J

J1 J2
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al., who proposed the valence-bond-solid model [22]. In this model, the singlet nature of the 
ground state, the gap to the first excited state and the short-range exponentially decaying spin 
correlations are correctly predicted [23] by considering two valence bonds emerging from each 
site and terminating in the two neighboring sites as illustrated in Fig. 1.2. Each valence bond 
contracts two of the 21=S  variables to form a singlet. It is constructed in the following way: 
first, the 1=S  spin at each site is decomposed into two 21=S  spin degrees of freedom. Next, 
the singlet bonds between adjacent liberated half-integer spins are made. At the end, the two 

21=S  spins at each site are symmetrized. Intuitively, the existence of the spin-singlet ground 
state can be understood as if the strength of the valence bonds is much larger than the “force” 
needed to align the two spin degrees of freedom within each ion. The 21=S  dimer and the 

1=S  Haldane Hamiltonians were, in fact, shown to belong to the same class, allowing a 
crossover between them by a continuous change of parameters [24]. Due to quantum many-
body effects, the Haldane gap is suppressed with respect to the isotropic exchange ( J∆ 41.0= ) 
as accurately determined from exact diagonalization of the Haldane Hamiltonian [25].  
 The Haldane gap was first observed in the CsNiCl3 system [26]. Because of the existence 
of the Néel order at low temperatures (see Fig. 1.4) a clear conclusion was impossible at that 
time. Another model material is [Ni(C2H8N2)2(NO2)]ClO4, abbreviated as NENP, which shows a 
spin gap and no Néel ordering [27]. Since then various other Haldane systems have been 
reported (as presented in Fig. 1.4) with the last one being PbNi2V2O8 spiral-chain system [28]. 
The magnetic resonance measurement on the latter parent system and different doped materials 
is one of the topics of this Thesis and will be thoroughly presented in chapter 3. 

(a)

(e)

(b)

(d)

(c)

Fig. 1.2: Within the valence-bond-solid model (a) each spin S = 1 on the uniform chain is
decomposed into (b) two S =1/2 spin degrees of freedom. (c) The adjacent spins are
paired into singlets and (d) the two S =1/2 spins at each side are symmetrized to restore
the original spin S = 1. (e) The introduction of a spin vacancy breaks two valence bonds
and liberates two 21=S  degrees of freedom on the neighboring sites. 
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 The validity of the valence-bond-solid model in real systems was directly confirmed for 
the first time by observing liberated 21=S  degrees of freedom when the Haldane bonds were 
intentionally broken by introducing spin vacancies to partially replace the 1=S  spins [29]. 
However, it has to be emphasized that the valence-bond-solid ground state is only an 
approximation of the realistic ground state for 1=S  spin chain with only the nearest-neighbor 
exchange coupling. Namely, it is an exact solution of the following Hamiltonian 

 ( )( )∑ ++ ⋅+⋅=
i

iiiiJH 32
11 SSSS . (1.1) 

The first excited state is a single triplet excitation with the Haldane gap corresponding to the 
wave vector at the boundary of the Brillouin zone ( π=q ). The next excited state is a two-
magnon continuum beginning at the energy of two Haldane gaps at wave vector 0=q  [30, 31]. 
 

1.2.2 Spin Ladders – Crossover from One to Two Dimensions 

 
The spin ladder systems serve as a bridge between one- and two-dimensional spin systems. A 
spin ladder system is an 21=S  antiferromagnetic square lattice with finite width and infinite 
length. The simplest representative of such compounds is a two-leg spin ladder with an 
approximately equal or larger exchange coupling of spins along rungs than along legs of the 
ladder [32]. The ground state is a composition of singlets formed on the rungs with the spin gap 
to the first excited state again suppressed due to the intraleg interaction. A model representative 
of the two-leg ladder system is SrCu2O3 compound. On the other hand, the recently synthesized 
two-leg ladder CaV2O5 is even more straightforward since the intrachain interaction is small 
compared with the intrarung interaction making the system quasi-zero-dimensional [33].  
 There is an interesting feature associated with ladder systems when more than two legs 
are coupled. Namely, the ladders with an even number of legs have a spin gap and the true spin-
liquid nature of the ground state, while odd-leg ladders are gapless and exhibit a power-law 
falloff of the spin correlation functions [34], which is a quantum manifestation of the fact that 
an even number of half-integer spins can be arranged into a spin singlet. The model systems for 
the n-leg ladders are Srn-1Cun+1O2n compounds [34]. With increasing number of legs we arrive at 
two dimensions, but the magnitude of the spin gap goes to zero. This is an indication why only 
few two-dimensional systems exhibiting the spin gap are known.  
 

1.2.3 Spin Gap in Two Dimensions 

 
The first possible route to the gapped excitation spectrum in two dimensions is modified 
exchange topology. This mechanism is realized in the 1/5-depleted square lattice of the CaV4O9 
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system [35], where the ground state is a two-dimensional arrangement of plaquette singlet units 
of four V4+ ions possessing spin 21=S  [36]. Second, sufficient geometrical frustration may 
also lead to spin gap. Frustration is expressed in the Kagomé lattice, where the 
antiferromagnetically coupled triangles share corners instead of sites in contrast to the familiar 
triangular lattice [37], and in the Shastry-Sutherland lattice [38]. Many other more or less 
artificial models have been theoretically discussed in the literature. For instance, the net spin 
model is a generalization of the Majumdar-Gosh model for any spin in one and two dimensions 
[39]. However, unfortunately, as a general rule these theoretical models do not correspond to 
any known physical system. 
 Although the Shastry-Sutherland model on a square lattice with selected diagonal (next-
nearest-neighbor) bonds presented in Fig. 1.3a seems rather artificial, there is, in fact, a physical 
realization of this model. Namely, the SrCu2(BO3)2 system was recognized to be topologically 
equivalent to the two-dimensional Shastry-Sutherland lattice [40, 41]. The equivalent 
Hamiltonian for the SrCu2(BO3)2 system in conventionally called the orthogonal dimer model 
[42] due to the orthogonal arrangement of Cu2+ 21=S  dimers in the SrCu2(BO3)2 compound 
shown in Fig. 1.3b. The ground state of the model Hamiltonian taking into account the 
antiferromagnetic exchange coupling J with the nearest-neighbor Cu2+ magnetic moment and 
the antiferromagnetic exchange J’ to four next-nearest neighbors, 

 
( ) { }

∑∑ ⋅′+⋅=
ml

ml
ji

ji JJH
,,

SSSS , (1.2) 

J

J’

J

J’

(a) (b)

Fig. 1.3: (a) The Shastry-Sutherland lattice with nearest-neighbor antiferromagnetic
exchange J’ and selected antiferromagnetic bond interactions J. (b) The arrangement of
Cu2+ ( 21=S ) sites within the crystallographic ab planes of the SrCu2(BO3)2 compound.
The nearest-neighbor exchange J and the next-nearest-neighbor exchange J’ are
accounted for within the orthogonal dimer model. The two lattices are topologically
equivalent. 
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is a simple product of singlet states on each dimer, while the lowest lying magnetically excited 
state is a single triplet excitation localized on one of the dimers [42]. 
 A more thorough introduction into the magnetic properties of the SrCu2(BO3)2 compound 
will be given in chapter 4. There the second topic of this Thesis, namely the magnetic resonance 
measurement on this two-dimensional spin-gap system will be comprehensively presented. 
 
 
1.3 Effects of Anisotropy, 3D Exchange and Impurity Doping on the 

Gapped Singlet Ground States 

 
As presented in the preceding section, there are not many systems exhibiting spin-liquid ground 
states. This is due to the fact that physical systems often exhibit perturbations to the ideal 
Heisenberg Hamiltonian that are not negligible. The parameters that may significantly affect the 
ground state properties and the low-lying magnetic excitations of a particular low-dimensional 
spin system are interchain/interlayer exchange coupling, magnetic anisotropy, and the dilution 
of the spin network by inhomogeneities introduced to the system in a form of impurities. In 
principle, due to the energy gap characteristic for spin-gap systems, the gaped ground states are 
usually robust to these perturbations up to a certain degree. However, when the external 
perturbation is raised above a definite threshold value it effectively lowers the energy of 
excitations at a certain point in the reciprocal space to such extent that a transition to the long-
range ordered state is induced. 
 For example, the importance of the interchain exchange ⊥J  with Z nearest chains and the 
magnetic anisotropy Dcf in the form of the single-ion anisotropy with tetrahedral symmetry (for 
explanation see the subsequent chapter) on the Haldane ground state is reflected on the Sakai-
Takahashi phase diagram [43]. In Fig. 1.4 several S = 1 spin-chain systems are placed on this 
diagram including the PbNi2V2O8 and SrNi2V2O8 systems [44]. As evident, both perturbations 
oppose the Haldane ground state. However, the gaped state is quite robust.  
 Another way to induce magnetic ordering in Haldane systems is the introduction of spin 
vacancies. For magnetic ordering to set-in it was theoretically predicted that the fraction of the 
introduced impurities into an integer-spin systems with disordered ground state has to exceed 
some critical threshold value xc [45]. This mechanism is known by the name “order-by-disorder 
effect” [46], since the introduced disorder in a form of spin vacancies, in effect, induces long-
range order in the spin system. It was actually the initial idea for testing the validity of the 
valence-bond-solid model in Haldane systems to introduce spin vacancies, which effectively 
brake the valence bonds and introduce 21=S  degrees of freedom at the host spin sites 
neighboring the impurity sites providing that the exchange coupling between the host and the 
impurity spins is sufficiently weak (see Fig. 1.2). The effective fractional spins 21=S  were 
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theoretically explained by exact diagonalization of finite open chains [47]. These calculations 
revealed that the four lowest-lying energy states in a finite chain are the singlet and the triplet 
states whose separation approaches zero exponentially with increasing chain length while there 
is, on the other hand, the Haldane gap to the next energy level. Such liberated spins were, in 
fact, observed for the first time in the NENP Haldane system by means of ESR [29, 48]. 
 The “order-by disorder effect” is known to show up in spin 21=S  systems possessing 
spin gap such as the spin-Peierls system CuGeO3 [16] or the two-leg spin ladder compound 
SrCu2O3 [49]. The breaking of the spin-Peierls ground state for the long-range Néel-ordered 
state in the CuGeO3 compound occurs for very low doping levels and irrespective of the nature 
of the substitution on either the Cu2+ or the Ge4+ site [5]. For instance, in the case of Zn doping 
on copper site there exists no critical concentration for the observation of the long-range order at 
low temperatures. Similar observations have been reported for the case of Zn-doped two-leg 
ladder system SrCu2O3 [49, 50]. Since the phenomenon of enhanced antiferromagnetic 
correlations is found to occur in several models and cluster geometries, a common simple 
explanation based on the valence-bond character of the spin correlations was given [51]. The 
antiferromagnetic order and the rapid collapse of the spin gap is a consequence of the 
appearance of 21=S  spin states near vacancy sites. This effect can be easily understood in the 
case of strong dimerization (spin-Peierls systems) or large ratio between the intrarung and the 
intraleg exchange (ladder systems). In this case weakly interacting “loose” 21=S  spins are 
created next to impurity sites. However, when the dimerization is small or the intrarung 

Fig. 1.4: The Sakai-Takahashi J⊥-Dcf phase diagram of weakly coupled one-dimensional
spin S = 1 chains (Ref. 43) with the position of some well-characterized Haldane systems
(Ref. 44). Vertical bar indicates the uncertainty of the parameters for the SrNi2V2O8. 
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exchange is not dominant, the 21=S  states are spread over several lattice spacings enhancing 
the spin-spin correlations at short distances [50, 52]. The magnetized segments of chains 
interact with neighboring chains resulting in the long-range ordering [53]. The induced liberated 
spins form an energy band, which appears below the lowest-lying magnetic excitation and 
effectively closes the spin-gap at relatively low doping concentrations. 
 Although the suppression of the spin gap and the enhancement of the antiferromagnetic 
correlations have been observed in different 21=S  spin-liquid systems, the vacancy-induced 
order in a Haldane system was not observed in the past despite a reach ensemble of the Haldane 
systems. However, recently Uchiyama et al. observed magnetic ordering also in Haldane-gap 
systems in the case of PbNi2-xMgxV2O8 compounds [28]. 
 Theoretical as well as experimental studies of impurity doping in spin-gap systems found 
general interest also as a step towards understanding the phenomenon of the superconductivity. 
At first sight, the two types of systems might not seem interconnected. For instance, in high-Tc 
compounds mobile carriers destroy the long-range Néel order on a square lattice leading to the 
opening of the pseudogap for spin and charge excitations. On the other hand, the transition from 
nonmagnetic gapped state to a magnetically ordered gapless state is induced by localized spin 
vacancies in dimerized spin chains or even-leg spin ladders. However, the effect of the mobile 
carriers on the gapped excitations of spin liquids should be directly related to the problem of the 
high-temperature superconductivity [5]. Corresponding theoretical studies of weakly hole-doped 
ladders confirmed the tendency of holes towards binding [32]. This mechanism is an inherent 
consequence of the nature of the ground state of the undoped two-leg ladder. Coupled holes thus 
minimize the number of “damaged” spin singlets [54]. In fact, Uehara et al. were the first to 
report superconductivity in the hole-doped chain/ladder system Sr0.4Ca13.6Cu24O41.84 in the case 
of applied pressure [55]. Additionally, it has been recently predicted that in the case of Li+-hole-
doped ladders the spin-gap character should be robust due to the formation of a dopant-magnon 
bound state just below the spin gap, in clear contrast to the Zn2+ vacancy doping [56]. 
 Even though the general effect of the impurity-induced ordering in spin-gap systems is 
well accepted by now, it still lacks a coherent theory. For this reason experimental insight into 
the problem should come useful, which was our initial motivation for performing magnetic 
resonance experiments on the Mg-doped and also Co-doped PbNi2V2O8 compounds. Second, 
also the doping effect on the two-dimensional dimer model SrCu2(BO3)2 should be of interest, 
especially in connection to the possible occurrence of the superconductivity, as the Cu planes 
resemble the situation encountered in the high-Tc cuprates. Since there is virtually no 
experimental data on doping the SrCu2(BO3)2 systems, we employed a number of experimental 
techniques, the outcome of which is reported in this Thesis. 
 Second, this work also addresses the question of magnetic anisotropy present in both 
families of materials. As already discussed above, the anisotropy can have a pronounced effect 
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on the ground state and the excited states properties of spin systems. When trying to produce a 
“general” theory about a certain phenomenon originating from the spin system it is, therefore, 
essential to have a broad general knowledge about the magnetic anisotropy of the system. 
Magnetic resonance measurements are ideal for addressing these open questions. 
 The structure of the Thesis is organized as follows: in the next chapter a general theory 
about the magnetic resonance absorption in magnetic systems will be given, which is necessary 
to understand the experimental results of electron spin resonance and nuclear magnetic 
resonance measurements presented in the subsequent two chapters. Chapter 3 will focus on the 
magnetic properties of the one-dimensional Haldane system PbNi2V2O8 and the compounds 
obtained from this parent material by Mg- and Co-doping on nickel sites as well as on the 
isostructural SrNi2V2O8 system. The magnetic ordering of the doped materials will also receive 
a considerable attention. Chapter 4 will be devoted to the magnetic properties of the two-
dimensional spin-gap system SrCu2(BO3)2. An upgraded picture about the magnetic anisotropy 
in this system will be given and the importance of the spin-phonon coupling mechanism will be 
highlighted. At the end of this chapter out attempts of doping this two-dimensional compound 
will be presented. Concluding remarks will briefly be given in chapter 5. 
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2 MAGNETIC RESONANCE IN MAGNETIC SOLIDS 

 
2.1 Electron Spin Resonance 

 
The general term electron magnetic resonance stands for magnetic resonance absorption 
experiments performed on an ensemble of magnetic moments corresponding to localized or 
itinerant electrons. In principle, such absorption can be seen in the case of paramagnetic 
compounds containing transition elements with incomplete inner shells, in ordinary metals, in 
magnetically ordered systems and in case of imperfections in insulators, which may trap 
electrons or holes [1]. In this respect the expression electron spin resonance (ESR) can be 
assigned to experiments with paramagnetic species in the case when the magnetic moments 
originate primarily from the spin momentum as in iron-group metals, as well as for the resonant 
absorption in ferromagnetically or antiferromagnetically ordered state. 
 The ESR technique often provides additional information to the information obtained by 
bulk magnetic susceptibility measurements. ESR can reveal the development of electronic 
correlations in magnetic solids when changing the temperature, the magnetic field, or some 
other external parameter. This is due to the fact that electrons serve as local probes in ESR 
measurements so that the spectra directly reflect fluctuations of the local magnetic fields present 
at a particular site in the crystal or at a particular wave-vector. 
 

2.1.1 Effective Spin Hamiltonian 

 
Electrons, which are localized at magnetic sites in incompletely filled electronic shells, are in a 
state different from a free-ion state. This is because of the interaction of each magnetic ion with 
its surroundings. The crystal-field (CF) effect accounts for the interaction of the paramagnetic 
ion with its diamagnetic neighbors. The second type of interaction that a particular magnetic 
moment encounters in a crystal is an interaction with other magnetic moments. The simplest 
crystal-field interaction is the electrostatic effect due to surrounding charges. This mechanism 
is, in fact, dominant for the rare-earth metals, which are characterized by incompletely filled 4f 
shell. The crystal field is much larger in the case of iron-group metals. The main reason is that 
3d electrons range over the outer region of an ion. In general, the orbitals of magnetic ions 
corresponding to free electrons in d shells directly overlap with orbitals of neighboring 
diamagnetic ions in a magnetic solid. The resulting covalency effect overshadows the direct 
electrostatic interaction and drastically enhances the strength of the crystal field [2].  
 In the case of performing magnetic resonance analysis in a magnetic solid, the so-called 
effective spin Hamiltonian is of great interest. To obtain such form of the Hamiltonian one has 
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to take into account also the spin-orbit coupling (LS coupling) in addition to the fundamental 
ionic potential and the crystal field. However, the relative “size” of the former interaction with 
respect to the crystal-field interaction varies appreciably between different groups of magnetic 
materials. Between the two types of the perturbative interaction LS coupling is the superior one 
in rare-earth metals. Magnetic moments are in such materials consequently directly proportional 
to the total angular momentum J. The effect of the crystal field, which can be treated as a 
perturbation, is then simply to eliminate the degeneracy of the energy levels corresponding to 
the incompletely filled electronic shell. In this respect it affects magnetic properties of a 
particular material. On the other hand, in the iron-group metals the crystal-field effect is much 
larger compared to both the thermal energy kT and the spin-orbit coupling. As a consequence, it 
has to be considered as a perturbation upon the ionic potential before taking into account the LS 
coupling. In effect, it splits the degenerated energy levels of a given orbital momentum L of the 
ion and can cause the familiar “quenching” of the expected values of this operator, 0=L  [1]. 
The spin-orbit coupling, which can be written as SL ⋅= λLSH  for the states of definite orbital 
momentum L and spin momentum S [3], and the Zeeman energy term, corresponding to the 
energy of the magnetic moment in the applied magnetic field ( ) ,00 BLS ⋅+= gH BZ µ  can be 
considered as a further perturbation. Here µB is the Bohr magneton and g0 = 2.0023 the free-
electron g-factor. The result is the effective Hamiltonian, which has for a nondegenerate orbital 
ground state 0  split-off by the crystal field, the following form [4] 

 ( )∑ Λ−Λ−Λ−=
νµ

ννµµννµµννµνµµ µλλδµ
,

,
2

,
2

,,0 BBSSSBgH BBS , (2.1) 

where µ and ν represent Cartesian components and the components of the tensor Λ  are defined 
as 

 ∑ −
=

n n EE
LnnL

Λ
0

,
00 νµ

νµ . (2.2) 

Here the sum runs over all the excited states corresponding to a given shell. Since a spin wave 
function is independent of an orbital wave function, S is left as an operator in Eq. (2.1). In the 
view of electron spin resonance only the first two terms of this equation are potentially 
important. The first one introduces the anisotropic g-factor tensor with components 

( )νµνµνµ λδ ,,0, Λgg −= , which define the compact form of the Zeeman interaction 

 0BgS ⋅⋅= BZH µ . (2.3) 

The second term is the origin of the single-ion anisotropy. It represents the anisotropy energy 
for the spin direction and can be written in the local frame, in which it takes a diagonal form, as 

 ( )222
yxcfzcfcf SSESDH −+= . (2.4) 
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The anisotropy parameters D and E are related to the principal values of the Λ-tensor as 

 
( )

( ) .
2
1

,
2
1

2

2

λ

λ

yyxxcf

yyxxzzcf

ΛΛE

ΛΛΛD

−−=







 +−−=

 (2.5) 

It is worth mentioning that the singe-ion anisotropy Hamiltonian has no effect on the ESR in 
systems with S = 1/2, as both spin states have the same energy. 
 In ionic crystals with localized electrons there is another important type of interaction of 
the localized magnetic moment with its surroundings, i.e., the coupling to other magnetic 
moments. The exchange interaction 

 
( )
∑ ⋅=

ji
jiijex JH

,
SS  (2.6) 

is usually much larger than the magnetic-dipole interaction. The sum in Eq. (2.6) runs over all 
pairs of spins. Essentially, there are two different mechanisms leading to this type of spin 
coupling [5]. The first one is the so-called direct exchange, which is due to the quantum 
exchange term of the Coulomb interaction and favors parallel alignment of interacting spins. 
The second one, the kinetic exchange, can be obtained from the Hubbard model in the second 
order perturbation in kinetic transfer term, when electrons are nominally localized. Such type of 
exchange interaction supports antiferromagnetic ordering. It is generally dominant in iron-group 
oxides and fluorides. 
 When, however, the exchange interaction between two paramagnetic ions in magnetic 
compounds arises via anions situated somewhere near them, i.e., the superexchange interaction, 
it depends also on the relative position of the participating ions and not only on the distance 
between them. 
 In the same manner as the orbital moments induced by the LS coupling depend on the 
orientation of the spin S with respect to the crystal axes, the same mechanism adds to an 
additional anisotropic part to the isotropic exchange interaction. In the first order perturbation 
one can derive the antisymmetric anisotropic exchange interaction, called Dzyaloshinsky-
Moriya (DM) interaction, which has the form  

 
( )
∑ ×⋅=

ji
jiijDMH

,
SSD . (2.7) 

Such antisymmetric form of the spin interaction was first suggested by Dzyaloshinsky to 
account for the phenomenon of the occurrence of weak ferromagnetism [6]. A microscopic 
derivation of this interaction was later given by Moriya [7] together with the symmetry 
restraints that the Dzyaloshinsky-Moriya vectors Dij must obey. The symmetry arguments are 
based on the space group symmetry of a particular crystal. Further, the result of the second 
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order perturbation calculation is the symmetric anisotropic exchange. In its principal frame this 
interaction can be written as 

 ( )
( )
∑ −+=

ji

y
j

y
i

x
j

x
iij

z
j

z
iijae SSSSeSSdH

,
. (2.8) 

This interaction is also called the pseudo-dipolar interaction because of the formal similarity of 
its form with the dipolar interaction. The size of the two anisotropic terms can be estimated as 

( ) JggD ⋅∆~  and ( ) Jgd ⋅∆ 2g~ , where ∆g accounts for the g-shift from the free electron 
value. These estimations are only approximate since the isotropic exchange in reality acts 
between the ground and the excited spin states at a given site as evident from the exact result of 
the perturbative calculation [4]. On the other hand, J stands for the exchange between the 
ground state of the two interacting ions. Furthermore, the estimation of the size of the DM 
vectors suffers a further faultiness. Namely, as already stressed, it critically depends on the local 
symmetry. For instance, if there is a center of inversion present in the midpoint of two coupled 
spins the DM interaction will be identically equal to zero. 
 The last interaction to be mentioned explicitly in this subsection is the magnetic dipolar 
coupling between isolated moments displaced by vector rij, 
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It is often inferior to the magnetic exchange anisotropy, especially in low-dimensional systems 
with low degree of local symmetry, where also the g-shifts are significant. The second condition 
to be fulfilled for this statement to be valid is that the isotropic exchange has to be considerable. 
 The hyperfine interaction of the electrons with the nuclei is usually negligible in 
magnetically dense systems. For this reason it can be ignored in explanation of ESR absorption 
in magnetic solids. However, it proves to be essential in nuclear magnetic resonance (NMR), as 
it will be presented latter in this chapter. 
 

2.1.2 General Theory of Magnetic Resonance Absorption 

 
The way to a general quantum-mechanical description of the magnetic resonance was paved by 
Kubo and Tomita [8]. In essence this is a linear-response theory, where the response of the 
system of magnetic moments depends linearly on the external disturbance. The authors split the 
spin Hamiltonian into two parts, the term Zex HHH +=0  and the magnetic anisotropy part 

ddaeDMcf HHHHH +++=′ , which was then treated as a perturbative correction. The 
Hamiltonians within the former term commute with each other, while they do not commute with 
the Hamiltonians included in the latter term. 
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 In the high-temperature limit, when the energy of thermal fluctuations is much larger than 
the Zeeman energy splitting, an ESR absorption spectrum is determined by thermal-averaged 
fluctuations of the transverse magnetization operator ,∑=

i
x
iB

x SgM µ  since it is given by the 
imaginary part of the dynamical susceptibility 

 ( ) ( ) ( )∫
∞

∞−

−=′′ teMtM
Tk

V tixx

B

d0
2

 ωωωχ . (2.10) 

The static magnetic field direction is usually denoted as the z direction. The operator xM  is 
coupled to the linearly polarized magnetic field tBB mw

x
mw 0

0 cosω=  oscillating with angular 
Larmor frequency of h00 Bg Bµω = . This coupling induces transitions between energy levels 
split in the external magnetic field. In the X-band ( GHz 600 ≈ω ) the energy splitting accounts 
for approximately 0.45 K in the temperature scale. Transforming the magnetization operator 
into interaction representation by transformation ( ) ( ) hh // 00~ tiHtiH etMetM −=  and taking into account 
the operators relations ( ) ( ) 00~~ =±± MtM  allows one to rewrite the Eq. (2.10) into the form 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫
∞

∞−

+−+−−−−+ +=′′ teMtMeMtM
Tk

V titi

B
d0~0~

8
00 ωωωωωωχ , (2.11) 

which demonstrates that resonant absorption is peaked at 0ω± . In fact, in the limiting case 
when there is no magnetic anisotropy ( 0=′H ), the spectrum would simply consist of two δ-
functions. The time dependence of the correlation functions ( ) ( )0~ mMtM ±  due to anisotropy is 
thus responsible for finite linewidths, lineshifts and the shape of the absorption spectra in 
general. Usually the linewidth is small compared to the Larmor frequency. This further allows 
one to neglect the contribution to the spectrum peaked at the negative frequency. 
 According to the Kubo-Tomita derivation, the normalized electron-spin-resonance 
absorption spectrum can be expressed as the Fourier transform of the relaxation function 

( ) ( ) ( ) −+−+= MMMtMt 0~ϕ , 

 ( ) ( ) ( )[ ]∫
∞

∞−

−= ttitI dexp 0ωωϕω . (2.12) 

In the case of Gaussian random processes the relaxation function is approximated by 

 ( ) ( ) ( ) 









−−= ∫

t

tt
0

dexp ττψτϕ , (2.13) 

where the spin correlation function ( ) ( ) ( )[ ] ( ) ( )[ ] −+−+ ′′= MMHMMH 2 
0~,00,~

hττψ  
fluctuates on the time scale of the electron correlation time Jec h≈= ωτ 1  since the 
anisotropic Hamiltonian is modulated by the isotropic exchange interaction in the interaction 
picture. Here the square brackets [ ]BA,  denote the commutator of the operators A and B. This 
approximately yields a Gaussian function ( ) ( ) 22 2e0 cττψτψ −= . 
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2.1.3 Exchange Narrowing of the Absorption Spectra 

 
Since the exchange coupling constant in principle spans a large interval of possible values, it is 
worth testing two limiting cases of the magnitude of the electron correlation time with respect to 
the parameter t describing the decay of the relaxation function. In the case when the spin 
correlation function decays slowly (t á τc) the spin correlation function can be replaced by the 
second moment of the absorption spectrum 

 ( ) [ ] [ ] −+−+ ′′== MMHMMHM ,,0  2
2 ψh , (2.14) 

which yields a Gaussian-shaped relaxation function and consequently also Gaussian profile of 
the absorption spectrum. The peak-to-peak linewidth of the derivative ESR spectrum is in this 
case given by 

 2
2 M

g
B

B

G
pp µ

δ = . (2.15) 

 In the second limiting case, usually encountered in real systems, the spins fluctuate very 
rapidly (t à τc) due to large exchange coupling constant with respect to the observed 
linewidths. The integral defining the relaxation function in Eq. (2.13) can then be approximated 
by 
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which sets the relaxation function as an exponentially decaying function. The Fourier transform 
consequently yields the Lorentzian lineshape of the absorption spectrum with the peak-to-peak 
linewidth 
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It should be stressed that the Lorentzian shape is expected for frequencies when (ω - ω0) á ωe, 
or equivalently for magnetic fields (Β - Β0) á ħωe/gµB, while the decay is faster in the tails of 
the spectrum, since it is determined by the relaxation function time dependence around .0=t  
This fact ensures finite values of the second moment, contrary to the second moment of the 
purely Lorentzian line that diverges. The second aspect to be highlighted is the occurrence of 
the exchange narrowing in the case of rapid electronic spin fluctuations. Namely, a comparison 
of Eq. (2.15) and Eq. (2.17) clearly demonstrates that the Lorentzian linewidth is suppressed 
with respect to the Gaussian one by approximately the factor of JM 2 . Since the second 
moment is proportional to the square of the magnetic anisotropy present in the system and the 
isotropic exchange is normally much larger, the introduced factor is quite small. 
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 A further correction of the value of the expected linewidth is possible if the electron 
correlation time is estimated more accurately [9]. Taking into account also the fourth moment of 
the absorption spectrum 

 [ ][ ] [ ][ ] −+−+ ′−′−= MMMHHHMHHHM ZZ ,,,,  
4 , (2.18) 

the linewidth of the Lorentzian lineshape is given by the expression  
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The constant C appearing in the above equation is not strictly determined in a sense that both 
the second and the fourth momentum of the real Lorentzian profile diverge. For this reason it is 
necessary to artificially suppress the contributions from the tails. In this respect it is worth 
mentioning that the strong exchange coupling condition (Β - Β0) á ħωe/gµB is usually fulfilled 
in magnetic solids up to the degree that the deviation of the spectrum from the Lorentzian shape 
is not experimentally observable at all. There are different ways of solving the problem of 
infinite moments known in the literature [10]. The common approach is to examine the cut-off 
Lorentzian curve with the cut-off field at an arbitrary value. The calculated constant 3π=C  is 
in this case independent of the exact position of the cut-off point. However, intuitively more 
reasonable are the approximation of the absorption spectrum with a product function of the 
Lorentzian curve and the Gaussian function ( )( )20 2exp JgBB Bµ−−  or a product function of 
the Lorentzian and the exponentially decaying function ( )JgBB Bµ0exp −− . In the former 
case the calculation of the moments yields the constant 62 π=C  while the latter 
approximation gives 62π=C . 
 The method of moments, initially derived by Van Vleck [11], requires the knowledge of 
infinite number of moments to completely describe the lineshape. However, computation of 
exact moments from a known model Hamiltonian can become a formidable labor when the 
order of the moment increases. For this reason it is usual to consider only the moments up to the 
fourth order in the ESR and up to the sixth order in the NMR analysis [12]. 
 

2.1.4 Effect of Spin Diffusion on the Absorption Spectra 

 
In spin systems it often turns out at higher temperatures that the Gaussian approximation of the 
decay of the spin correlation function ( )τψ  is not justified. The diffusional contribution to the 
decay of this function rather dictates a slower time dependence of the form [13] 

 ( ) 2d−∝ ττψ , (2.20) 
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where d represents the dimensionality of the spin system. In one- and two-dimensional systems 
such diffusional dependence leads to a diverging exponent of the relaxation function in the 
approximation given by Eq. (2.16). In reality, this additional mechanism affects the resonant 
spectra in a way that they get broader and change their shape from Lorentzian towards the 
Gaussian lineshape. 
 The effect of the spin diffusion mechanism is reflected in the relaxation function only 
through the secular part of the anisotropy Hamiltonian, i.e., the part commuting with the 
Hamiltonian H0. On the other hand, the nonsecular terms contribute the Lorentzian component 
to the absorption due to their characteristic oscillating time dependence in the interaction 
representation originating from the Zeeman interaction. These oscillations average out the effect 
of diffusional decay of the spin correlation function. 
 In one-dimensional systems with the isotropic exchange as the dominant spin interaction 
the relaxation function can be analytically calculated, ( ) ( )( )23exp tt Γϕ −= , in the case when the 
contribution of the secular part of anisotropy Hamiltonian to the second moment sM 2  is of the 
same order as the overall second moment 2M . The parameter in the exponential decay is 
determined as ( ) 31322

2 34 c
sM τΓ h=  [13]. The Fourier transform then yields an absorption 

spectrum decaying somewhere in-between the Lorentzian and the Gaussian curve with an 
increased linewidth of the order Γ.  
 Another condition to be fulfilled to observe such kind of time dependence of the 
relaxation function in one dimension is for temperature to be considerable compared to the 
characteristic temperature of the spin system .BkJ  For this reason, it is the increasing of the 
temperature that enables the observation of the deviation of the lineshape from the Lorentzian 
shape and the broadening of the absorption spectra. 
 On the other hand, there is no universal picture about the lineshape in two-dimensional 
systems when the diffusional mechanism is efficient. However, the deviations of the 
experimentally observed ESR spectra from the Lorentzian shape have been observed and 
successfully ascribed to the presence of spin diffusion [14]. Although the effect can be present 
in two dimensions, it is usually much less significant than in one dimension [15]. The relatively 
fast decay of the spin correlation function ( ) 23

3
−∝ ττψ D  in thee dimensions suppresses the 

divergence of the exponent in Eq. (2.13) completely so that the lineshape remains Lorentzian. 
 However, the diffusional decay of the electronic spin correlation functions is often not 
detectable by ESR experiments even in low-dimensional magnetic systems. Although these 
systems may be characterized as having a reduced dimensionality due to the dominant exchange 
along a chain or within a plane, also the interchain or interlayer exchange coupling can still be 
large compared to the magnetic anisotropy terms regulating the linewidth of the absorption 
spectra. In such cases the decay of a nonequilibrium spin polarization is effectively happening 
in three dimensions.  
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2.1.5 Temperature Dependence of the Linewidth 

 
An exact calculation of the second and the fourth moment of the ESR absorption spectra 
determining the linewidth through Eq. (2.19) is possible only in the limit of infinite temperature. 
In this case the static spin correlations of the products of spin operators acting on different 
lattice sites, can be neglected. In general one is dealing with the assignment of computing four-
spin correlation functions since the magnetic anisotropy Hamiltonian is quadratic in spin 
operators. When the spin operators acting on N different crystal sites are treated as completely 
uncorrelated and the density matrix is approximated by unity, the following equations are found 
useful when calculating the moments 
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 For instance, if we include the dipole interaction, the antisymmetric Dzyaloshinsky-
Moriya interaction and the symmetric anisotropic exchange (Eq. (2.9-2.11)) into the calculation 
of the second moment, the above relations yield [10] 
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The only mixed terms appearing in this expression couple both symmetric interactions. The 
mixing occurs only with the truncated (secular) part of the dipolar interaction commuting with 
the Hamiltonian H0. This produces parameters ( ) ( ) 322

0 8cos313 ijijBij rgB πθµµ −= , where θij 
stands for the angle between the external magnetic field B0 and the rij vector. Contrary, the last 
term represents the contribution of the total magnetic dipole interaction [16]. Namely, in the 
instance of strong isotropic exchange it is not sufficient to include only the truncated part as 
Van Vleck did when introducing the method of moments for describing the absorption spectra 
[11]. The reason for this is that the satellite lines, originating from the nonsecular part of the 
dipolar coupling, merge with the central line. 
 The calculation of the general expression of the fourth moment is much more involved, 
which is why it will not be explicitly given at this point. Although tedious, the calculation for 
special cases when one of the magnetic anisotropy terms dominates is possible and will be 
presented at a later stage when analyzing the ESR results. 
 At finite temperatures the assumption of completely uncorrelated spin operators in not 
strictly valid any more. The static spin correlations that set-in at temperatures of the order of the 
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isotropic exchange require the relations given by Eq. (2.21) to be corrected. An indicator about 
the influence of this short-range order effect is simply the deviation of the static magnetic 
susceptibility from the Curie dependence typical for isolated magnetic moments. The impact of 
the static spin correlations is reflected in the thermal average of products of spin operators 
through normalized static correlation functions ( )TCij  [17], which are defined by the equation 

 ( ) ( ) ( ) αβ
βα δ)12(1

3
1Tr TCSSSSS ij

N
ji ++= . (2.23) 

These correlation functions depend, apart from the temperature, only on the distance between 
the two spins if we include into the density matrix only the isotropic exchange, which is 
supposed to be the largest part of the spin Hamiltonian. It is also worth mentioning that the trace 
of any odd number of spin operators remains equal to zero at temperatures large compared to 
the Zeeman splitting [18], ( ) ( ) 0TrTr == γβαα

kjii SSSS . On the other hand, the actual four-spin 
correlation functions can be decoupled according to the following decoupling scheme [17] 
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It turns out that the contributions to the second moment from the symmetric and the 
antisymmetric part of the anisotropy Hamiltonian remain decoupled even at finite temperatures, 
so that the second moment can be written as [18] 

 ( ) ( ) ( )TMTMTM as
222 += , (2.25) 

where the temperature dependence arises from the temperature evolution of the spin correlation 
functions. In general these functions approach zero when increasing the temperature for ji ≠ . 
At high temperatures the most important are the corrections due to the nearest neighbors while 
at lower temperatures also the correlations to more distant neighbors have to be taken into 
account. As the analytical solution of the short-range correlations effect is not possible, this 
approach is usually limited to temperatures JTkB ≥  [17]. The calculation of the fourth moment 
taking into account also spin correlations is extremely complicated task, which is why this 
parameter is usually considered to be temperature independent. 
 

2.1.6 Magnetic Resonance in the Vicinity of Critical Points 

  
In principle, there are three different temperature intervals of interest when performing magnetic 
resonance absorption experiments on magnetic solids, which undergo a transition to a 
magnetically ordered state below some critical temperature Tc. Namely, the high-temperature 
interval (T à Tc) where only short-range correlations potentially play a role and the spin 
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diffusion mechanism may be relevant, the temperatures just above the critical temperature 
( cTT ≥ ), where precursor effects of long-range ordering are present, and temperatures below Tc, 
for which appreciable internal magnetic field due to magnetic ordering are crucial for 
understanding the resonant spectra.  
 In the critical region there is an intrinsic difference between ferromagnetic and 
antiferromagnetic materials. That is, in ferromagnets the contribution of the spin correlations at 
wave-vector 0=q  gets critically enhanced while these correlations are diminished in 
antiferromagnets in the light of staggered (alternating) correlations at wave-vector q0 at the 
antiferromagnetic zone center, which tend to dominate near antiferromagnetic transitions. If 
looked at in the light of a snapshot picture, increasing clusters of ordered spins begin appearing 
when approaching the transition point of a system. Also the mean-squared amplitudes of the 
staggered Fourier component of the magnetic-moment distribution increases, which can be 
properly accounted for by the wave-length-dependent static susceptibility ( )0, =tqχ . On the 
other hand, also the dynamical aspect of the critical fluctuations is important. Namely, when 
approaching the transition temperature the average lifetime of a cluster of ordered spins will be 
increased. This effect, called the critical slowing-down of spin fluctuations, is expressed by the 
decrease of the relaxation rate ),( TΓ q  of the spin correlation functions and, in effect, adds to 
the increased fluctuation amplitudes. Both the static and the dynamic effect contribute to a 
significant line broadening of the ESR absorption spectra in the vicinity of the phase-transition 
temperature. Not to get too philosophical at this point, some expressions for the development of 
the magnetic resonance parameters in the critical region will be presented in the next chapters, 
when appropriate. 
 
 
2.2 Nuclear Magnetic Resonance 

 
The techniques of nuclear magnetic resonance (NMR) can be also successfully applied to the 
study of the electronic properties of solids. The virtue of this experimental method is that it can 
provide us with a probe that is only weakly coupled to the electronic system, allowing for 
precise determination of the local magnetic fields present in the material under investigation. 
Thus it often gives additional information to that obtained by electron spin resonance, where 
electrons directly serve as experimental probes. Because of the effectively weak coupling, 
which is usually much weaker than the leading Zeeman term, the NMR results are also easier to 
interpret. Nuclear magnetic resonance is sensitive to the time-averaged local magnetic fields 
through the position of the absorption lines as well as to certain spectral components of 
fluctuating fields. The fluctuations affect the linewidth and the relaxation times of nuclei. 
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2.2.1 Origins of Internal Fields and Frequency Shifts of NMR Spectra  

 
In the light of the size of different interactions determining nuclear magnetic resonance (NMR) 
spectra of a certain kind of nuclei in a particular material, there is a considerable difference 
between nonmagnetic [1, 19] and magnetic materials, which can also exhibit ferromagnetic [20] 
or antiferromagnetic order [21]. Namely, the relatively small corrections to the energy of a 
nucleus in the external magnetic field can be for nonmagnetic solids associated with the dipolar 
field of other nuclei and atomic diamagnetism reflected in chemical shifts. On the other hand, 
the electronic dipolar fields are several orders of magnitude larger than the corresponding 
nuclear fields, and the atomic hyperfine fields of magnetic ions possibly 106 times larger. 
 As the rate of the nuclear spin-spin relaxation and also the NMR linewidth scale with the 
size of the local field, locBT γ≈21 , where γ is the gyromagnetic ratio, the NMR spectra at first 
sight seem to be unobservable in magnetic solids. However, electronic fluctuations due to the 
isotropic exchange between magnetic moments play a crucial role in this respect. Namely, if 
during the Larmor period ( ) 1−≈ effL BT γ  ( effB  is an effective field, which is the sum of the 
external magnetic field and the static component of the local field arising whether from dipolar 
or hyperfine origin) the local field fluctuates rapidly, what a particular nucleus effectively sees 
is the time-averaged local field. The fluctuating transverse components of the local field 
oscillating at the Larmor frequency ( ) 12 −= LL Tπν  contribute to the spin-spin and the spin-lattice 
relaxation (T1-relaxation). In addition, the spin-spin relaxation is effected by those longitudinal 
components of the local field fluctuating at very low frequencies (ν á νL), since these produce 
a distribution in TL.  
 A typical frequency dependence of the amplitude of the local field for both the dipolar 
and the hyperfine interaction at temperatures appreciably above the ordering temperature has a 
step-like dependence with a step of a temperature-rounded shape annihilating the local field, 
which occurs at the value of the exchange frequency [21]. The rapid reorientation of electronic 
spins caused by generally very strong isotropic exchange makes the amplitude of the local field 
spectral components ( ) ( )Llocloc BB ωωω =≈= 0  severely attenuated with respect to the value 
one would expect in the static picture. The necessary condition for NMR to be observable in 
magnetic materials is for exchange energy to be sufficiently large to satisfy the condition 

 
( )( )

e

locB
T ω

ωγ 2

min
2,1

01 =
> , (2.26)  

where min
2,1T  is the smallest value of the relaxation times still experimentally observable. The 

above equation again clearly shows the effect of the exchange narrowing mechanism. It is also 
worth mentioning that the amplitude of the local field varies with the degree of order in 
electronic system and is thus quite temperature dependent.  
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 The internal fields at the nucleus produced by the electronic spin moments can be 
classified into three broad classes depending on the nature of the atoms under investigation in 
the magnetic solid. In the first class of nuclei of nonmagnetic atoms, the main anisotropic 
addition to the Zeeman Hamiltonian 0BI ⋅−= iZH hγ  for the nucleus at site i originates from the 
dipole interaction between the nuclear spin Ii and the average electronic spin moments of 
surrounding paramagnetic ions jS . The static dipolar field dB  can be obtained from the 
dipolar Hamiltonian 

 ( )( )∑ ⋅−⋅−=⋅−= −

j
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4

rSrSIBI
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when the time-averaged value of the electronic spin is taken into account. In the Eq. (2.27) the 
summation extends over all magnetic sites j, which are at the distance ri,j from the nucleus. The 
static field is proportional to the time-average of electronic magnetic moments and thus to the 
uniform magnetization of the system. In the paramagnetic phase this interaction is nonzero only 
in the case of applied external magnetic field B0, which partially polarizes the electronic system. 
However, the dipolar magnetic field Bd and the external field need not be parallel since the 
electronic g-tensor is in general anisotropic. This is even more pronounced if magnetic ordering 
sets in.  
 In the second group are nuclei of magnetic ions. These nuclei of the paramagnetic atoms 
are subjected to the intense hyperfine fields, which arise from the interaction of the nucleus with 
electrons within the same paramagnetic ions. In addition to the dipolar Hamiltonian (Eq. (2.27)), 
anisotropy terms of the form 

 iii
hf
iH SAI ⋅⋅=  (2.28) 

determine the properties of NMR absorption of the nucleus at site i. The static hyperfine 
magnetic field hγiihf SAB ⋅−=  is usually so intense to produce significant lineshifts or even 
makes the resonant absorption experimentally unobservable [21]. In the one-electron theory the 
hyperfine interaction can be expressed in the following form [22] 
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The first term represents the Fermi contact interaction being nonzero only for s electrons, which 
have a nonzero probability of being found exactly at the point of the nucleus. In such case the 
last two terms are zero due to the spherical distribution of the electron density. These two terms 
are the orbital and the spin dipole energy terms. For several electrons outside the closed shell 
the operators in Eq. (2.29) are taken as the sum operators for the entire ion. However, this 
conventional one-electron theory has its shortcomings, as it cannot predict hyperfine fields for 
ions with net spin but no unpaired s electrons. In fact, if an ion is in the S orbital state and has a 
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net spin the spin and the orbital dipole contributions will be zero, however, the ion can still have 
appreciable local fields arising from the Fermi contact term. In Mn2+ this hyperfine field can be 
of the order of 70 T [22]. The many-electron contribution to the hyperfine coupling includes the 
polarization effect involving core electrons. Namely, the incompletely filled shell with L ≠ 0 
distorts the closed shell and, in turn, causes an interaction with the nuclear magnetic moment 
[22]. The calculation of the hyperfine tensor is thus far from being trivial, which is why it is 
usually taken phenomenologically as an anisotropic tensor and is not calculated from the first 
principles. 
 The last class joins nuclei of partially magnetic ions. For such materials there is an 
appreciable overlap between the wave functions of electrons of nominally nonmagnetic ions and 
those wave functions of electrons from paramagnetic ions. As a consequence a space 
redistribution of electrons at the nonmagnetic sites appears. This can be explained in the light of 
the amount of covalency present in bonds as follows. To the extent that an orbital of the 
paramagnetic ion is mixed with an orbital of the diamagnetic ion in the bonding function, it is 
reduced in the antibonding function. This means that, to the degree that bonding occurs, the 
unpaired electron in the antibonding orbital has the character of the initial orbital of the 
diamagnetic ion. Consequently, an imbalance at nonmagnetic ion characteristic of the symmetry 
of its initial orbital occurs in the sense that the unpaired electron in the antibonding orbital, with 
spin parallel to that of the paramagnetic ion, can produce its characteristic hyperfine field. In 
this way even at ions with paired s electrons there can be significant hyperfine coupling of the 
Fermi contact type [23]. The effective hyperfine interaction can be written for partially magnetic 
ions as a sum of transferred hyperfine contributions 

 ∑ ⋅⋅=
j

jjii
hf
iH SAI ,

~~ , (2.30) 

where the sum runs over all the neighboring paramagnetic sites j that effect the spatial 
distribution of electrons on the diamagnetic site i. From the size and the shape of the transferred 
hyperfine tensor ji,

~A  one can in principle deduce the orbital character and the extent of 
collaboration of the electrons from the diamagnetic species with the paramagnetic electrons in 
formation of the covalent bonding. 
 As demonstrated in this section, the line position reveals information on the time-
averaged value of the local fields. The resonance frequency strictly follows the temperature 
evolution of the averaged spin moment when the coupling constants (dipolar and hyperfine) are 
assumed to be temperature independent.  
 Before turning to the theoretical discussion of the line-broadening due to fluctuating local 
fields, another major source of anisotropy in the case when I ≥ 1 has to be introduced, i.e., the 
nuclear quadrupole interaction. This coupling arises from the interaction between nuclear 
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quadrupole moment Q with the electric field gradients (EFG) Vij existing at the nucleus and is 
described by the Hamiltonian [19] 
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The above Hamiltonian is written in the principal frame of the EFG tensor with the principal 
values by convention taken as XXYYZZ VVVeq ≥≥= , while the asymmetry parameter is 
defined as ( ) ZZYYXX VVV −=η . In the presence of high magnetic fields applied to the nuclear 
system the quadrupole Hamiltonian can be treated as a perturbation to the Zeeman coupling. In 
this case several resonance frequencies appear. The first order frequency shifts for the transition 
between nuclear states are then given by 
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with ( )hIIqQeQ 1243 2 −=ν  and θ, φ as the polar and the azimuthal angles of the magnetic 
field direction in the principal frame of the EFG tensor. For half-integer spins the central 
transition 2121 ↔−  is a delta-function not shifted by the quadrupole interaction from the 
Larmor frequency νL while the satellite lines appear as symmetrically displaced delta-functions 
with respect to the central line. In the second-order perturbation also the central transition gets 
shifted, while the satellites remain symmetric. The quadrupole frequency shift of the central 
transition is a minor effect compared with the shifts of the satellites in strong magnetic fields as 
it is of the order of LQ νν 2 . The angular dependence of this transition is explicitly given by [24] 
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 When working with powder samples a proper distribution of the Euler angles has to be 
taken into account. Additionally, also the probability of a certain nuclear spin transition has to 
be considered. This probability is given by the square of the matrix element responsible for the 
transition between two states, 

 ( ) ( )mmIImImW mm 111
2

,1 −−+=−∝ +
− . (2.34) 

For the abovementioned reason the heights of the satellite lines are suppressed with respect to 
the central line or can even be completely wiped out, especially if a distribution of the electric 
field gradient is present. 
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2.2.2 Relaxation and Linewidths 

 
As noted earlier, the observability of the nuclear magnetic resonance in magnetic material 
depends on the magnitude of certain spectral components of the fluctuating local fields or 
equivalently the fluctuating electron spin correlation functions. The amplitude of the 
fluctuations varies with the degree of order in the electronic system and is, therefore, quite 
temperature dependent. The general expressions for line broadening and spin-lattice relaxation 
in the case of large exchange coupling were derived by Moriya [25] using the Kubo-Tomita 
general theory of magnetic resonance. In principle, the general theory presented in sections 
2.1.2 and 2.1.3 for the electron spin resonance applies also to the case of the nuclear magnetic 
resonance if the electron magnetization operators are replaced with the nuclear magnetization 
operators. However, it is somewhat more edifying to speak in the language of local fields 
arising from the interaction of the nucleus with the surrounding electrons.  
 The fluctuations in the local field are defined as ( ) ( ) locloc tt BBb −= . As already 
explained, the time-averaged field contributes to the shift of the resonance frequency while the 
fluctuations, on the other hand, are themselves responsible for finite homogeneous linewidth. 
Similar as it was already presented for the case of electron spin resonance (Eq. 2.12), a 
normalized absorption line in NMR experiments can be expressed in terms of the relaxation 
function of transverse nuclear magnetization M(t), as 

 ( ) ( ) ( )[ ]∫
∞

∞−

−= ttitI nn dexp 0ωωϕω , (2.35)  

where the angular Larmor frequency is given by locBB += 00 γω . The relaxation function is 
related to the correlation function [26] 
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through the familiar expression given by Eq. (2.13). By agreement the index z again denotes the 
direction of the external magnetic field and { }AB  stands for the symmetrized product of two 
operators. Once again, as with ESR, if the electron correlation time is small compared to the 
spin-spin relaxation time the exponent of the relaxation function will be a linear function of 
time. Lorentzian lineshape is then expected. The expression for the spin-spin relaxation time, 
which is related to the full width at half height (FWHH) of the absorption spectrum in the 
frequency units as 21 Tπν =∆  in the picture of the homogeneous broadening, can be derived to 
have the following appearance 
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Introducing the spectral density of the fluctuating local field 
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the Eq. (2.37) can be rewritten as 
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The first term represents contributions arising from the secular part of the perturbing 
Hamiltonian defining the local field while the transverse correlation functions represent the 
nonsecular part. The spin-spin relaxation thus probes dynamic as well as static components of 
the local magnetic fields. The spin-lattice relaxation, on the other hand, in governed solely by 
the transverse fluctuations 
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Consequently, it is affected only by the fluctuations of the local magnetic fields at the Larmor 
frequency. Since electron correlations normally persist for much shorter times than the nuclear 
Larmor period, the nuclear relaxation times are simply determined by the spectral density of 
fluctuating field at zero frequency.  
 The magnetic field fluctuations are of course correlated to electronic spin fluctuations 
through Eqs. (2.27-2.30). To be precise, if we write a coupling term between a nuclear spin Ii at 
site i and the ionic spin Sj at site j in the general form (accounting for the hyperfine as well as 
the dipolar coupling) 

 jjii
i
hfH SAI ⋅⋅= ,  (2.41) 

and identify electron spin fluctuations from the equation spin polarization as SSS −=δ , the 
expressions for the nuclear relaxation times governed by the coupling to the system of 
paramagnetic electrons can be transformed into the following general form 
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The temperature dependence of the NMR relaxation times in magnetic solids can be in principle 
obtained by calculating the time dependence of the electron spin correlation functions. In this 
respect the NMR analysis demands less theoretical efforts than ESR. This is due to the fact that 
nuclear resonance strictly samples local properties in magnetic solids. That is, a nucleus at a 
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particular site resonates independently of other nuclei, which is due to the linearity of the 
nuclear perturbing Hamiltonian in the electronic spin operators. Its resonance spectrum is 
determined by electronic fluctuations and correlations sensed at a particular wave-vector [26]. It 
is the same argument that explains why only the knowledge of two-spin correlation functions is 
needed in NMR, while ESR in its essence requires the information about the four-spin 
correlation functions. In the above-presented way also the nuclei can serve as an experimental 
probe for detecting the temperature evolution of the spin correlations in the spin system of the 
paramagnetic electrons. 
 At the end of this chapter, few words on the effect of the nonmagnetic mechanism (i.e., 
the quadrupole coupling) on the nuclear relaxation are in place. The influence of this interaction 
on the shift of the resonance line has already been highlighted from the static point of view. 
However, one has to include dynamical aspect for this coupling to be able to induce relaxation. 
In liquids such feature is provided by rapid reorientations of molecules, which produces 
fluctuations of local electric field gradients. On the other hand, for the quadrupole coupling to 
be effective in inducing relaxation in solids phonons have to be taken into account. Such lattice 
vibrations modulate EFG tensors. It is well established that the spin-lattice relaxation times, for 
instance, should scale linearly with the temperature if direct phonon processes are dominant, 
which account for the single phonon creation of annihilation processes. On the other hand, if the 
phonons are inelasticaly scattered on the spin system as in the case of the Raman processes, the 
increase of the relaxation rate is much steeper ( 2T  to 7T  depending on the temperature with 
respect to the Debye temperature) [19].  
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3 SPIN CORRELATIONS AND MAGNETIC 
ANISOTROPY IN 1D HALDANE SYSTEM  
PbNi2-x(Mg,Co)xV2O8 

 
3.1 Crystal Structure and Magnetic Properties 

 
The first synthesis of the PbNi2V2O8 compound was reported in the late 1990s by Uchiyama et 
al. [1]. The system is isomorphous to SrNi2V2O8 material, whose structure is known for almost 
two decades [2]. These compounds possess a tetragonal unit cell (space group I41cd) with lattice 
constants given for the Pb-based material as a = 12.16 Å and c = 8.32 Å. The corresponding unit 
cell is presented in Fig. 3.1. The only ions possessing magnetic moment are the Ni2+ ions with 
the spin quantum number S = 1. In a general case applicable to all of the iron-group metals 
surrounded by oxygen ligands, the orbital moment of Ni2+ ions is expected to be effectively 
quenched by a strong crystal field. Thus the magnetic structure of PbNi2V2O8 material consist of 
S = 1 effective moments forming peculiar helical arrangement. The spiral-shaped chains of 
edge-shared NiO6 octahedra extend parallel to the crystal c axis as shown in Fig 3.1b. The 
nearest neighbor exchange links two Ni2+ ions through two oxygen bridges (see Fig. 3.4). On 
the other hand, the interchain magnetic exchange coupling is suggested to be provided by the 
VO4 tetrahedra. Pb2+ ions are located between Ni2+ chains and are not expected to play any 
major role in the magnetism of this compound. From the structural point of view the system is 
thus expected to be quasi-one-dimensional.  
 Indeed, the magnetic properties prove that PbNi2V2O8 compound can be in first 
approximation considered as a one-dimensional spin system. All the Ni2+ sites and the nearest-
neighbor (intrachain) bonds are crystallographically equivalent. The corresponding dominant 
isotropic exchange is antiferromagnetic. Its size K 95⋅= BkJ , which is considerable, was 
evaluated from the temperature dependence of the susceptibility curve at high temperature [1], 
i.e., above the temperature of 120 K where the susceptibility curve exhibits a maximum. Similar 
value was obtained also from the inelastic neutron scattering (INS) profiles [1, 3] which, 
however, yield slightly higher value of the nearest-neighbor exchange, K 110⋅= BkJ , if only 
the nearest-neighbor interaction is considered. The mismatch was argued to be due to 
intrinsically different information obtained from the two experimental techniques as cold 
neutrons investigate only low-energy excitations of the system. Employing thermal-neutron 
diffraction [4] has improved the disagreement and also showed that both the next-nearest 
neighbor intrachain exchange ( K 5' ⋅= BkJ ) as well as the interchain coupling ( K 2- ⋅=⊥ BkJ ) 
are considerable. It should be noted that the latter one is of a ferromagnetic character. 
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  Regarding the reported isotropic exchange coupling constants PbNi2V2O8 system can be 
considered as a quasi-one-dimensional quantum Heisenberg antiferromagnet. The temperature 
dependence of the low-temperature susceptibility reflects an activation behavior proving the 
existence of the Haldane ground state in the case of the PbNi2V2O8 compound [1]. Due to the 
presence of the spin gap the magnetic response of a Haldane system is expected to vanish when 
the temperature is lowered below the characteristic spin-gap temperature. Second, the singlet 
nature of the Haldane ground state dictates a characteristic field dependence of the 
magnetization at low temperatures. A sudden increase of this parameter occurs above the 
critical value of the magnetic field where the lowest triplet-like magnetically excited state 
crosses the energy level of the ground state. The values of the intrinsic energy gaps 
characteristic for noninteracting Haldane chains as estimated from the neutron scattering 
experiments are K 36|| ⋅= Bk∆  for the spin wave excitation polarized along the spin chains and 

K 46⋅=⊥ Bk∆  for the transverse excitations [3]. The “three-dimensional” energy gaps are 
significantly suppressed (by roughly a factor of 2) with respect to the intrinsic values due to the 
interchain exchange. It is also worth noting that the lowest-lying Haldane excitations are highly 
mobile triplet-like excitations and occur near the center of the antiferromagnetic zone. 
 Uchiyama et al. [1] also reported the synthesis of impurity-doped PbNi2-xMgxV2O8 
compounds and showed that these materials exhibit a peak in the susceptibility curve below 
approximately 3.5 K characteristic for the phase transition to the Néel long-range-ordered 
phase. This ordering was further confirmed by thermodynamical measurements of the specific 
heat. The dilution dependence of the Néel temperature exhibits a steep increase for low vacancy 

a
bc

Pb

Ni

VO4

(a) (b)

Fig. 3.1: (a) The unit cell of the PbNi2V2O8 crystal structure with VO4 tetrahedra in
addition to smaller and larger spheres representing nickel and lead ions, respectively. (b)
The spiral-shaped chains of Ni2+ S = 1 spins. 
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concentration, has a maximum of ~3.5 K around x = 0.16 and gradually decreases above this 
concentration [5]. The interesting feature of the PbNi2-xMgxV2O8 compounds is that the lower 
critical concentration of spin vacancies is either zero or very close to this value. Since the pure 
PbNi2V2O8 compound is positioned in the close vicinity of the phase boundary with the easy-
axis ordered state on Sakai-Takahashi phase diagram as shown in Fig. 1.4, this shouldn’t come 
as a surprise. Actually, the isostructural compound SrNi2V2O8 was reported to be positioned just 
across this quantum phase boundary according to the results of the inelastic neutron scattering 
experiments [3]. However, this statement was deduced from the fit of the absorption peak in a 
rather unconvincing manner. The presence of diffuse and phonon scattering in the absorption 
peaks at low energy disabled the authors to exclude the existence of an energy gap smaller than 

K 12⋅Bk . Moreover, powder diffraction experiments also failed to detect any magnetic Bragg 
reflection proving that the ordered moment is small, if present at all [3]. In fact, the magnetic 
field dependence of the magnetization in this compound is very similar to the one in the Pb-
based system [6]. The observed sudden increase of the slope in the magnetization curve is 
usually considered as one of the fundamental evidences for the presence of the spin gap. 
 The most important origin of the magnetic anisotropy in PbNi2V2O8 system is reported to 
be the slight distortion of NiO6 octahedra [1]. Following the initial proposal, up to date all the 
studies of the parent and the doped materials considered the main magnetic anisotropy term of 
the uniaxial single-ion form 2z

icf SD . The z axis is taken to coincide with the crystal c axis. The 
inelastic neutron diffraction experiments yield a negative value of K 2.5- ⋅= Bcf kD , which 
corresponds to a magnetic easy axis parallel to the crystal c axis [3, 4].  
 A more precise picture about the appearance of the magnetic anisotropy still has to be 
worked out since the assumption about the form of the major anisotropy contribution was based 
on the symmetry of the crystal structure and thus ignored the local symmetry at a particular Ni2+ 
site, which in fact determines the actual form of the single-ion magnetic anisotropy. For this 
reason the distortion of the NiO6 octahedra, which can be provided only by accurate structural 
measurements, has to be examined more thoroughly and implemented into the anisotropy 
Hamiltonian. Second, additional anisotropy mechanisms have to be considered. In this respect 
Dzyaloshinsky-Moriya interaction could be vital as we are dealing with a low-dimensional 
system with a low degree of symmetry at a local level and substantial exchange coupling, all the 
basic ingredients for an appreciable antisymmetric anisotropic exchange interaction. 
 Despite the fact that the crossover from the Haldane state to the three-dimensionally 
ordered state is now experimentally quite well established and confirmed, some details still 
remain unclear. Namely, the competition between the three-dimensional correlations and the 
one-dimensional Haldane excitations is particularly vague. Also the microscopic nature of the 
ordering mechanism in still not well understood. 
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 The next unresolved problem in the lead-nickel vanadate system under investigation is 
the influence of the vicinity of the phase-transition point between the disordered spin-liquid 
ground state and the long-range ordered state on the spin correlations. This corresponds to the 
Pb-based system and even more to the Sr-based one, reportedly being on the verge of the three-
dimensional ordering instability. Furthermore, the present state of experimental findings seems 
to be somewhat contradicting for the latter compound.  
 All the above-mentioned open questions can be most elegantly answered by a 
combination of structural information and spectroscopic measurements capable of investigating 
the local magnetic properties. The best tool for the investigation of the magnetic anisotropy 
present on the local level thus seems to be electron spin resonance, which directly probes the 
magnetic anisotropy. Furthermore, this method offers insight into the development of the 
electron spin correlations as a function of both the temperature as well as the level of doping. 
 As the occurrence of long-range ordering is directly related to the development of three-
dimensional spin correlations while the excitations in the pure Haldane state are of one-
dimensional nature, magnetic resonance techniques seem to be an appropriate tools for 
investigating the cross-over behavior in the doped samples being directly sensitive to these 
correlations. In this regard nuclear spin resonance can provide complementary point of view 
with respect to the electron spin resonance if nuclei only weakly interacting with the electronic 
system are used as local probes. In this way static as well as dynamic properties of the 
electronic correlations can be investigated from the external perspective.  
 For the above-mentioned reasons we decided to perform ESR measurements [7, 8] and 
51V NMR measurements [8, 9] on the family of PbNi2-xMgxV2O8 compounds as well as on the 
PbNi2-xCoxV2O8 samples and the Sr-based undoped system. All the measurements were 
performed on powder samples since single crystals are, unfortunately, not available at present. 
The next section will highlight the results and present an appropriate interpretation of the 
magnetic resonance measurement employed on the parent PbNi2V2O8 material. Measurements 
on the doped systems will be presented in the section 2.3, followed by the section on the 
magnetic resonance findings in the SrNi2V2O8 material. At the end of this chapter some 
concluding remarks gathering and highlighting the major results will be given. 
 
 
3.2 Magnetic Resonance Measurements on the Parent Material  

 
As already mentioned, NMR and ESR techniques can provide complementary information 
about the electronic correlations in the system. ESR in its essence offers information on the 
direct response of the electronic magnetic moments to the microwave magnetic field. On the 
other hand, NMR can provide a local probe only weakly coupled to the electronic magnetic 
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system. For this reason we have chosen to carry out the 51V NMR measurements since 
vanadium sites should be involved in the formation of the relatively strong interchain exchange 
bonds between Ni2+ sites and should thus be appreciably coupled to the electronic system. 
 

3.2.1 Magnetic Anisotropy and the Dynamics of Spin Correlations as Determined 
by ESR 

 
The X-band ESR measurements on the PbNi2V2O8 compound were performed in the 
temperature range between room temperature and 5 K. The representative spectra for the 
temperatures above 40 K are presented in Fig. 3.2a. For lower temperatures accurate 
measurements were not possible due to the fact that the observed signal loses its intensity when 
lowering the temperatures as well as it exhibits a rather strong broadening. The derivative ESR 
spectra in the above mentioned temperature range were satisfactory fitted by the “broad”-
Lorentzian distribution taking into account the two Lorentzian-shape contributions, one centered 
at the positive magnetic field Bc and the other one at the negative magnetic field -Bc as described 
in subsection 2.1.2, 

 ( ) ( )
( )( )

( )
( )( ) 














++

+
+

+−

−
−= 222222 44

16

BBB

BB

BBB

BBBABI
c

c

c

c

δδ
δ

π
. (3.1) 

In the above expression parameter A represents the intensity of the signal, while δB is related to 
the observed linewidth. In the case when the contribution of the second term is only minor this 
latter parameter corresponds to the full width at half height (FWHH) of the absorption spectrum 
or to 3 -times the peak-to-peak linewidth (δBpp) of the corresponding derivative ESR 
spectrum. At lower temperatures some spurious signals come into existence at low magnetic 
fields, which could be due to intrinsic ESR signal of the resonator that we use or could also 
indicate on the presence of some impurity phases in the sample. However, the intensity of these 
features is marginal, which makes them unobservable by x-ray diffraction measurements. For 
this reason they will be neglected in the forthcoming discussion. 
 The temperature evolution of the ESR intensity corresponding to ( )TA  in the Eq. (3.1) is 
shown in Fig. 3.2b. It roughly follows the temperature dependence of the static susceptibility of 
this sample indicating that the observed signal can be safely attributed to the magnetic Ni2+ 
moments on the Haldane chains. We have also verified the absolute value of the ESR intensity 
using the standard reference CuSO4·5H2O and proved that the value of the measured intensity 
corresponds to the value of static susceptibility within the experimental error [7]. The 
explanation for the observed discrepancy in the temperature behavior of the static susceptibility 
and the ESR intensity can be found in the Kramers-Kronig relation 
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where the function P stands for taking the principal part of the integral. In the case when the 
signal is narrow with respect to the center position ω0 the proportionality of the static 
susceptibility and the intensity of the ESR spectrum, which is the integral under the absorption 
curve, is obvious. A slight experimental difference is that ESR preferably detects ( )Bχ ′′  to 

( )ωχ ′′ . On the other hand, when the observed signals are as broad as in our case the 
proportionality of the intensity and the static susceptibility is only approximate, which is 
believed to be the origin of the mismatch presented in Fig 3.2b.  
 The linewidth and the g-factor of the ESR absorption lines show two significantly 
different characters when changing the temperature with a crossover occurring around 150 K 
(see Fig. 3.3). This fact indicates that the electron correlations determining the ESR absorption 
profiles are changing appreciably around this temperature. In what follows in this subsection the 
two different regimes will be separately presented. 
 

Fig. 3.2: (a) X-band ESR spectra of the PbNi2V2O8 powder sample with gray lines
representing the corresponding fits to the “broad”-Lorentzian lineshape given by Eq.
(3.1). (b) A comparison of the temperature evolution of the ESR intensity ( ) with the
static magnetic susceptibility ( ). 
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High-Temperature Behavior 

 
At temperatures above the temperature where the ESR linewidth shows a minimum, both the 
linewidth as well as the g-factor increase moderately with temperature as shown in Fig. 3.3. In 
general, at temperatures above the characteristic spin temperature determined by the exchange 
coupling one expects that both of these parameters would become temperature independent. 
Namely, the localized spins can be treated as uncorrelated at sufficiently high-temperatures due 
to intense thermal spin fluctuations. However, there are several possible mechanism, which can 
induce temperature dependence of these two parameters even at temperatures far above the 
exchange temperature. 
 The first possible source of the high-temperature linewidth increase is the diffusional 
decay of the spin correlation function. As described in subsection 2.1.4, the algebraic decay of 
this function can cause significant line broadening in low-dimensional systems. The spin 
polarization decay is severely reduced in purely one-dimensional systems due to limited paths 
of exchange interaction, which, in effect, are responsible for averaging out the line-broadening 
mechanisms. However, when the spin diffusion effect is important also the lineshape changes 
from the Lorentzian towards the Gaussian shape. Since the experimental spectra nicely 
correspond to Lorentzian function, the spin diffusion is expected not to play an important role in 
the determination of the PbNi2V2O8 ESR spectra. This experimental finding could also be 
predicted beforehand. Namely, the relatively strong interchain exchange coupling makes the 
investigated system only quasi-one-dimensional. The rate of the out-of-chain diffusion is of the 
order of h⊥J  [10] and thus much faster than the X-band ESR frequency. Hence the spin 
system behaves like three dimensional on the ESR timescale. The decay of the spin correlations 
is consequently not confined to only one dimension, which makes the spin diffusion process 
unaffected. 
 The second mechanism, which can lead to temperature-dependent linewidths at high 
temperatures, is also intrinsic to the spin system. Namely, at temperatures BkJT ∼  static spin 
correlations reflecting the presence of the short-range correlations vary appreciably with the 
temperature thus making the ESR linewidth and the g-factor temperature dependent (see 
subsection 2.1.5). One would usually expect to observe major changes at temperatures around 
the exchange temperature, however, in low-dimensional spin systems the short-range 
correlations effect can be observed up to considerably higher temperatures, i.e., even to 

BkJT 10∼ [11]. Moreover, the short-range order present in the system affects also the g-factor 
of the ESR absorption lines due to the presence of the internal magnetic fields induced by the 
clusters of ordered spins. 
 The third possible source of the high-temperature linewidth increase can be sought in the 
coupling of the spin system and the underlying lattice. In general, as the density of the phonons 
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rises with the temperature, the lifetime broadening effects become more and more important. 
The vibrations of the lattice time-modulate the magnetic anisotropy felt by paramagnetic 
moments, thus possibly leading to the ESR linewidth broadening. The effect of the phonon on 
the Dzyaloshinsky-Moriya interaction proposed by Seehra et al. [12] can be also quantitatively 
evaluated. In the next chapter this mechanism will be shown to be responsible for the high-
temperature linewidth increase in the SrCu2(BO3)2 system. On the other hand, it may also be 
important in PbNi2V2O8 systems if the configuration of the Ni2+ spin chains is looked at from a 
“closer” perspective, as it will be argued in the following. The coupling of the spin system to the 
lattice would invoke line-broadening effect, however, it is expected not to have a major 
influence on the center position of the ESR lines. Fig. 3.3 then implies that the high-temperature 
increase of the linewidth as well as the increase of the g-factor is mostly due to the presence of 
static short-range spin correlations in the system. 
 Let us now focus on the observed magnitude as well as the temperature and the angular 
dependence of the ESR linewidth. The spectra are rather broad, which is the reflection of 
appreciable spin anisotropy present in the spin system. The Lorentzian shape of the absorption 
spectra indicates that motional-narrowing process is effective. If we suppose the major 
anisotropy to originate from the single-ion anisotropy and to have the form 2

zcf SD  [1] with 
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Fig. 3.3: (a) The temperature dependence of the peak-to-peak linewidth and (b) the g-
factor of the X-band ESR spectra of the PbNi2V2O8 powder sample. 



 
43

K 2.5- ⋅= Bcf kD  as determined by inelastic neutron scattering experiments [3, 4], the second 
moment (Eq. (2.14)) and the fourth moment (Eq. (2.18)) entering the expression for the 
expected linewidth have the following forms 
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where θ denotes the angle between the external magnetic field and the direction of the easy axis, 
which has been proposed to lie parallel to the crystal c axis. Averaging the above equations over 
the parameter θ with an assumption of an isotropic powder distribution and plugging the 
obtained expression in the Eq. (2.19), one can obtain the value of the expected infinite-
temperature linewidth 
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When deriving this equation the constant term 62π=C  appearing in Eq. (2.19) was taken into 
account as explained in the paragraph following this equation. The evaluated linewidth is of the 
correct order of magnitude, however, it is about three-times to small if we refer to the room-
temperature value. As the lineshape is the Lorentzian curve, the spin diffusion capable of 
breaking the validity of the Eq. (2.19) as well as the g-factor anisotropy cannot be responsible 
for the above discrepancy. Thus there seems to be some additional spin anisotropy terms so far 
not considered in the literature. Two possible sources will be considered in what follows. 
 First, in the original paper on the magnetic properties of the PbNi2V2O8 system the single-
ion anisotropy term was suggested to have the easy-axis form with the easy axis pointing along 
the crystal c direction [1]. This proposal was made on the basis of the tetragonal crystal 
symmetry of the investigated system. Such an assumption may well be valid on a macroscopic 
scale as evident from the orientational effect, where Ni2+ chains tend to align along the direction 
of a strong magnetic field when put into a liquid media [1]. However, one cannot turn a blind 
eye to this proposal when performing microscopic experiments like ESR or INS, which are 
sensitive to the local magnetic structure. The form of the single-ion magnetic anisotropy term is 
determined by the local arrangement of the ligand O2- ions surrounding a particular Ni2+ ion and 
the onsite magnetic anisotropy does not necessary point along the crystal c axis.  
 In the case of the cubic crystal-field symmetry the lowest lying orbital state of an 
octahedrally coordinated Ni2+ ion (3d8 configuration) is a singlet, while two triply degenerate 
energy states lie significantly above this state due to the strong crystal-field [13]. The ESR 
technique then probes the magnetic dipole transitions within the singlet ground state when the 
corresponding three 1=S  spin states are split in the external magnetic field. The orbital 
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momentum of the ground state is “quenched” and partially restored by the spin-orbit coupling, 
which mixes a finite amount of the six excited orbital states into the ground state. This, for 
instance, explains the deviations of the measured g-factor from the free-electron value in the 
investigated compound. In an undistorted octahedral environment the Ni2+ ions encounters an 
isotropic g-shift and no single-crystal anisotropy as all of the principal values of the Λ-tensor 
introduced in subsection 2.1.1 are equal [14]. However, if the symmetry is less than cubic the 
two triplet states will be split leading to finite single-ion anisotropy. It is the local arrangement 
of the six O2- ions around each Ni2+ ion that determines the size and the principal axes of the Λ-
tensor and thus the single-ion anisotropy. If the distortion of the O2- octahedron is for instance 
tetrahedral the Dcf term will be the only one present in the effective crystal-field spin 
Hamiltonian given by Eq. (2.4). 
 There are different approaches regarding how to consider the effect of the distorted ligand 
environment. The most straightforward method and at the same time the only accessible for 
someone that is not a “molecular-bonding” chemist is the crystal field approach [15], which 
treats the crystal-field interactions of a particular ion with the surrounding ligands from the 
perspective of the point-charge electrostatic potential being the dominant interaction. As such it 
is directly applicable only to rare-earth ions, where the covalency effect is not significant. For 
Ni2+ ions surrounded by O2- at a distance of 2 Å [2] significant overlap of the atomic orbitals is 
expected.  
 For the above-mentioned reason the determination of the single-ion anisotropy tensor in 
the case of the PbNi2V2O8 compound is far from being trivial. A further complication is 
provided by the fact that the distortion of the O2- octahedra has practically no symmetry judging 
from the crystal structure of the SrNi2V2O8 compound [2] and recent highly accurate 
determination of the crystal structure of the PbNi1.88Mg0.12V2O8 system [16] as presented in Fig. 
3.4. The crystal structure of the PbNi2V2O8 compound is expected to be very similar, which is 
reflected also in the similar ESR signals of the Mg-doped and the pristine sample, as will be 
presented in the following section. Since the overlap of atomic orbitals is expected to play the 
major role in determining the principal tensor of the single-ion anisotropy, the direction of the 
principal axes would not be accurate enough without using molecular-orbital computation 
programs. However, since the distortion of the NiO6 octahedron is quite general the Dcf and Ecf 
term of the same order are expected. This has not been considered so far in any of the theory 
and experiments on PbNi2V2O8. 
 Second, the Dzyaloshinsky-Moriya antisymmetric exchange interaction between the 
neighboring Ni2+ ions (Eq. (2.7)) should be appreciable in the investigated system due to the fact 
that there is no center of inversion at the midpoint between them. Symmetry arguments led 
Keffer [17] to the conclusion that in the case of the superexchange interaction the 
Dzyaloshinsky-Moriya vector points in the direction j

b
i
b nn × , where i

bn  is the normalized 
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vector connecting the i-th interacting magnetic moment with the ion acting as the bridge for the 
superexchange. If there are two pathways as in Fig. 3.4, the corresponding DM vector will be of 
the form 

 ( )jiji
ij D )3O()3O()2O()2O( nnnnD ×+×= , (3.5) 

with JggD ⋅∆≈  as explained in chapter 2. If the accurate crystal structure is taken into 
account the DM interaction can be evaluated to be of the size K 5.115.0 ⋅≈⋅∆≈ Bij kJggD  
with the DM vector pointing approximately perpendicular to the Ni-Ni direction as indicated in 
Fig. 3.4. 
 The estimated DM vector is rather large and should thus effect the spin configuration at 
low temperatures. However, it cannot alone account for the observed linewidth. The 
experimental linewidth is thus probably due to a combined effect of both the single-ion 
anisotropy terms as well as the Dzyaloshinsky-Moriya interaction. The discrepancy between Eq. 
(3.4) and experiment thus comes of no surprise. However, it seems at this stage impossible to 
give any firm statement about the anisotropy of the PbNi2V2O8 system without performing an 
experiment on a single crystal. 
 

Fig. 3.4: The two neighboring distorted NiO6 octahedra with the nickel-oxygen distances
corresponding to the case of PbNi1.88Mg0.12V2O8 at 300 K [16]. The broken arrows
represent the direction of the vectors from the nickel ions to the bridging oxygen ions
while the solid arrow corresponds to the Dzyaloshinsky-Moriya vector between the two
Ni2+ ions. 
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Mid-Temperature Behavior 

 
As evident from Fig. 3.3 there is an apparent change of the temperature dependence of the ESR 
parameters in the PbNi2V2O8 spin system coming into existence below approximately 150 K. 
The signal seems to progressively change its character from the high-temperature to the low-
temperature nature. Something similar, though a bit different, was also reported by Date et al. 
[18] for the [Ni(C2H8N2)2(NO2)]ClO4 system (NENP) in the first ESR experiment performed on 
Haldane systems. The authors of this report observed an exchanged-narrowed signal at the g-
factor close to the free electron value at high-temperatures and another signal significantly 
shifted towards higher fields emerging at temperatures below approximately the temperature 
corresponding to the Haldane gap. Although the two signals overlapped, they were able to 
separate the two contributions in the mid-temperature regime. Since this initial ESR study 
numerous experimental reports on different Haldane systems [19, 20] as well as theoretical 
calculations [21, 22] concerning the ESR in Haldane systems have been published. However, all 
of them focus on the low-temperature behavior, where only the lowest-lying magnetic 
excitations are expected to be contributing significantly to the ESR signal. At low temperatures 
the transitions within the lowest lying triplet state at π=q  dominate the ESR spectra. On the 
other hand, the transitions from the singlet ground state to this excited state are not allowed due 
to the fact that the momentum transfer in the ESR measurements is limited to 0≈∆q .  
  With the use of the established facts let us now try to understand what would the low-
temperature ESR absorption spectrum of PbNi2V2O8 spin system look like. If there were no 
anisotropy terms in the spin system the ESR spectrum would be simply a δ-function located at 
the g-value corresponding to the free-electron value. The anisotropy splits the zero-field energy 
values of the three modes. The corresponding magnetic field diagrams are schematically 
presented in Fig. 3.5 for magnetic fields applied parallel to the principal axes of the single-ion 
anisotropy tensor. The corresponding curves for the external field parallel to the z principal axis 
are given by [19] 
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where the isotropic g-factor and excitation “velocity” v have been assumed. The relations for the 
other two directions of the magnetic field are obtained by the circular permutation of the 
indexes x, y and z. Due to the powder nature of the compound under investigation the only non-
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model-dependent parameter is the lowest energy gap, which Zheludov et al. measured in the 
INS measurements, K 14|| ⋅= BkE . Next they assumed what seem to be an unjustifiable 
assumption of the tetragonal symmetry of the single-ion anisotropy tensor as argued above, and 
obtained the energy gap for the two magnons corresponding to fluctuations of the staggered 
magnetization in the two directions perpendicular to the easy axis, K 28⋅=⊥ BkE . These gaps 
are somewhat lower than the intrinsic Haldane gaps due to interchain exchange.  
 The energy diagram of these three excitations in the case of the external field parallel and 
perpendicular to the easy axis is shown in Fig. 3.5a for 2.2=g . The two δ-function signals for 
the direction of the external field parallel to the easy axis corresponding to the resonance 
frequency GHz 3.9=ν  that we use in X-band are centered at T  17.91

|| =B  and T  78.92
|| =B . 

Second, if the magnetic field were applied in the direction perpendicular to the easy axis the 
1=∆m  transition would be observed at the field T  73.1=⊥B . As the perpendicular directions 

represent a two-dimensional space one would expect to observe the major part of the ESR signal 
in a powder sample at ⊥B . It turns out that there is another important effect of the anisotropy on 

Fig. 3.5: The energy splitting of the lowest triplet excitation at the center of the
antiferromagnetic zone in the external magnetic field (a) with and (b) without axial
symmetry as given by Eq. (3.6). The plots correspond to the external magnetic field
oriented along the easy axis denoted by z ( ), along the x ( ) and along the y ( )
principal axes. 
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the ESR absorption spectra. Namely, the Zeeman splitting becomes wave-vector dependent, 
which introduces finite linewidths [21]. In Fig. 3.5b additional splitting of the two perpendicular 
modes due to Ecf is shown. The situation is more complicated in this case, however, a general 
conclusion would be that the position of the lowest transition moves towards higher fields. 
 Although we do not know an exact form of the single-ion anisotropy and the 
corresponding energy gaps, we can generally state that the low-temperature ESR signal in the 
Haldane system is shifted towards higher magnetic fields with respect to the high-temperature 
paramagnetic phase due to the zero-field energy splitting of the lowest-lying triplet excitation. 
In this sense the experimentally observed rather strong reduction of the measured g-factor in the 
PbNi2V2O8 system can be understood in terms of a gradual shift of the center of the ESR signal 
from the single-ion paramagnetic excitations to the collective Haldane excitations. This change 
of the character is due to the Boltzman repopulation of the energy levels when lowering the 
temperature, which effectively suppresses the observability of the transitions within the magnon 
continuum. Regarding the increase of the observed X-band ESR linewidth, on the other hand, 
the answer in less clear. Such behavior could be due to the change of the spin dynamics when 
entering the Haldane regime. However, a more definite answer can be given only if the 
temperature dependence of the spin correlation functions is calculated for this system. 
 

3.2.2 51V nuclei – Spies for Electronic System  

 
The 51V (I = 7/2) NMR measurements were performed in an external magnetic field of 

T 34.60 =B . The temperature dependence of the spectra as well as the evolution of their first 
moment in the parent PbNi2V2O8 sample is shown in Fig. 3.6. As evident their shape and 
linewidth do not change much with temperature. The lineshape is characteristic of the 
quadrupole-perturbed Zeeman Hamiltonian additionally almost isotropicly broadened, as will be 
argued below. Already a quick inspection of the NMR absorption lines reveals the presence of 
shoulders characteristic for the quadrupole interaction. On the other hand, the center of the line, 
which is determined by the first moment of the absorption line, shifts with the temperature 
appreciably. A sharp resonance at 71.72 MHz, particularly strong at higher temperatures, is due 
to a presence of Cu nuclei at or around our probe and will be neglected in what follows. 
 

Role of Transferred Hyperfine Interaction in PbNi2V2O8 System 

 
Let us first focus on the center position of the absorption lines. The shift of the NMR line from 
the expected Larmor frequency for diamagnetic 51V nuclei, MHz 974.70=dia

Lν , is considerable, 
especially at higher temperatures. The reference frequency corresponds to VOCl3, which is 
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taken as the reference for 51V (I = 7/2) NMR measurements with zero chemical shift. The value 
of the shift of the center NMR position in PbNi2V2O8 at room temperature is thus around 300 
kHz, or equivalently % 4.0=∆ Lνν . Such a large shift at the V5+ site, which is diamagnetic, 
can only be explained by a substantial coupling of 51V nuclei with the surrounding electrons 
belonging to the paramagnetic Ni2+ sites. 
 This statement can be put on even firmer grounds if the temperature dependence of the 
lineshift is compared to the dependence of the magnetic susceptibility. The susceptibility curve 
was measured in a high magnetic filed of 5 T to imitate the NMR experimental conditions as 
accurately as possible. However, this curve does not deviate from the measurements in a low 
magnetic field since the magnetization-versus-magnetic-field dependence is linear at room 
temperatures and at the lowest accessible temperature of 2 K. As apparent from Fig. 3.6 the two 
quantities, i.e., the magnetic susceptibility and the center position of the NMR lines have the 
same tendency of changing with temperature. There are differences some of which can, 
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Fig. 3.6: (a) 51V NMR spectra of PbNi2V2O8 measured in the external magnetic field of
6.34 T at selected temperatures. The vertical line represents the center position of the
spectrum at 4.2 K. The sharp resonance at 71.7 MHz is due to copper nuclei extrinsic to
the compound under investigation. (b) Comparison of the temperature dependence of the
center of the NMR spectra, as determined by the first moment ( ), with the static
magnetic susceptibility ( ). Note that the frequency scale begins at 70.974 MHz, which is
the position of the expected 51V Larmor frequency. 
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however, be qualitatively explained. Namely, the low temperature deviation of the susceptibility 
from the decreasing dependence with decreasing temperature is attributed to a small quantity of 
“impurities” present in the system [23]. Such a Curie upturn can be also due to the presence of 

21=S  spins emerging at the ends of the chains, which terminate on the surface of the grains. 
 As explained in chapter 2, the main interactions of the vanadium nucleus (belonging to 
the nonmagnetic ion) with its surroundings in a magnetic system are expected to be the 
quadrupole coupling, the dipole interaction between the nuclear magnetic moment and the 
neighboring paramagnetic moments, and the transferred effective hyperfine interaction due to 
the mixing of electronic wave functions between the vanadium orbitals and the orbitals of the 
oxygen ligands, which are supplementary mixed by the nickel orbitals. The first interaction can 
in principle lead to the frequency shift of the central line ( 2121 →− ). However, this shift is 
due to the second order perturbation and is in out experiment a minor effect since we prove later 
on that the quadrupole frequency is rather small. Moreover, the quadrupole interaction is not 
expected to change much with the temperature. The dipolar interaction with surrounding 
magnetic moments also does not produce any lineshifts in a powder sample, since it can be 
represented by a traceless tensor. The only origin of the observed drift of the line from the 
frequency expected in case of diamagnetic V5+ ions can thus be the isotropic part of the 
effective transferred hyperfine coupling, which is according to Eq. (2.30) written in the form 

 ∑ ⋅⋅=
j

jjii
hf
iH SAI ,

~~ . (3.7) 

Here the summation extends over the nearby paramagnetic neighbors that disturb the 
distribution of the electrons from the otherwise completely occupied V+5 shells. The hyperfine 
tensor can be conveniently decomposed into the isotropic and the traceless anisotropic part, 

an
ji

iso
ijji A ,,

~~ AIA += . This decomposition proves to be useful in the analysis of the center position 
in powder samples since only the isotropic part has a nonzero contribution. Anisotropic part of 
the hyperfine coupling tensor, on the other hand, leads to a characteristic anisotropic broadening 
of the NMR spectra. The determination of the magnitude of the isotropic part can be our initial 
assignment. Trying to accomplish this goal, we follow the procedure introduced by Sulman and 
Jaccarino [24] for the case of paramagnetic MnF2. 
 For setting the reference of the zero paramagnetic frequency shift we choose the value of 
the first moment of the absorption line at 4 K, where the spin susceptibility is expected to be 
negligible due to its activation dependence at low temperatures. This value of almost exactly 

MHz 710 =Lν  can serve as a better reference for determining the temperature dependence of the 
frequency shifts due to interactions with the surrounding paramagnetic centers than the Larmor 
frequency corresponding to the purely diamagnetic case, MHz 974.70=dia

Lν , since we may also 
have a chemical shift of that order present in the material. From the measured frequency shift at 
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room temperature, kHz 300=∆ν , we can then calculate the corresponding isotropic hyperfine 
coupling using the Eq. (3.7)  

 mK 17.0
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2~
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mol
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ji k

B
gNhA

χ
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When deriving the expression in Eq. (3.8) it was assumed that the average value of the spin 
moment at the paramagnetic site is given by relation 02 BSgN moljBA ⋅= χµ . Further, all of the 
six nearest neighboring Ni2+ ion that are connected to the V5+ site were equally considered 
though the distance to the vanadium nucleus varies from 3.33 Å to 3.48 Å and the geometry of 
the exchange paths also changes. 
 The V5+ sites evidently act as partially magnetic ions. The covalency effect induces a 
space redistribution of the 3s and 3p electrons that manifests itself in a partially unpaired 
character of the vanadium s and p electrons. These electrons are then responsible for the 
transferred hyperfine coupling. Since the s electrons are the only type of electrons that can lead 
to isotropic frequency shifts due to the Fermi contact interaction (see Eq. (2.29) and the 
corresponding explanation) the percentage of the s electrons taking a part in the covalent 
bonding can be estimated. This fraction is connected to the amount of the s electrons at V5+ site 
becoming unpaired. If there was one unpaired electron in the vanadium 3s shell it would 
produce the isotropic hyperfine coupling sensed by the vanadium nucleus, which is according to 
Eq. (2.29) of the order 
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When deriving this estimation the density of the s-type electronic wave function at the nucleus 
for the V5+ ion, ( ) -32

3
Å 6010 =

s
ψ , was calculated from the tables of ionic wave functions [25]. 

Comparison of the magnitudes of the transferred hyperfine coupling (Eq. (3.8)) and the 
hyperfine coupling corresponding to an unpaired 3s electron at vanadium site reveals the 
percentage of vanadium 3s electron being unpaired, the fraction being 3105.2 −⋅≈w .  
 In the same manner also the fraction of the unpaired 3p electrons at vanadium site could 
be estimated, assuming that one would have a single crystal at one’s disposal. However, as 
already mentioned, in powder samples the resulting anisotropic frequency shift due to the 
anisotropic part of the transferred hyperfine interaction is averaged out.  
 

Possible NMR Line-Broadening Mechanisms 

 
The 51V NMR spectrum of the PbNi2V2O8 obtained by a long averaging is shown in Fig. 3.7a. 
Let us first try to explain the linewidth of the central transition ( 2121 →− ). According to Eq. 
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(2.33) the second order contribution of the quadrupole coupling to the central transition is of the 
order of LQ νν 25 . The quadrupole frequency can be very roughly estimated from the positions 
of the shoulders in the absorption spectrum (Eq. (2.32)) to be around kHz 80≈Qν . The 
corresponding value of the linewidth of the central transition provided by the quadrupole 
coupling, kHz 1≈Qδν , is almost two orders of magnitude smaller than the experimental 
linewidth of the central transition kHz 600 =δν , measured as the full width at half height.  
 The next interaction worth considering is the estimated isotropic hyperfine coupling (Eq. 
(3.8)), which corresponds to the frequency of MHz 21≈isoν . However, due to the fluctuating 
nature of the electronic correlations strong reduction of this frequency is expected. The 
anticipated line broadening due to the fluctuations of the isotropic hyperfine interaction can be 
estimated from the expression for the spin-spin relaxation time given by Eq. (2.42) or by using 
the method of moments introduced in Chapter 2 in connection with the electron spin resonance. 
The full frequency width at half height is then given by [24] 
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where Z = 6 represents the number of nearest-neighbor paramagnetic ions and the exchange 
frequency is approximated by ( ) 22 312 h+′= SSZJeω  [26] with 2=′Z  as the number of the 
nearest paramagnetic neighbors for each magnetic moment. For obtaining this expression it was 
assumed that the electronic spins are completely uncorrelated (Eq. (2.21)), that the electronic 
fluctuations are virtually isotropic in the paramagnetic phase, and that SS ≈δ . Due to the very 
rapid electronic fluctuations the contribution of the isotropic hyperfine exchange is drastically 
reduced by a factor of 106 from the expected value MHz 216 ≈isoν . The contribution to the line 
broadening due to this interaction is thus even by two orders of magnitude smaller than the 
quadrupole interaction.  
 The next step is to evaluate the dipolar coupling between the nuclear magnetic moments 
and the electronic paramagnetic moments. For this purpose it is convenient to rewrite the 
dipolar coupling given by Eq. (2.27) in the tensor notation characteristic for the hyperfine 
tensor,  

 ∑ ⋅⋅=
j

j
d

jii
i
hfH SAI , . (3.11) 

Here the coupling tensor has the following form assuming an isotropic g-factor [27]  
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where ni,,j represents the normalized vector ri,j connecting the nucleus at site i with the 
neighboring paramagnetic spin at site j. 
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 In the paramagnetic state every time-averaged magnetic moment of Ni2+ paramagnetic 
ion would lie parallel to the external magnetic field assuming that the anisotropy of the 
susceptibility tensor is negligible. Actually, there is a slight difference of the magnetic 
susceptibility values measured for the external field applied along the three crystal axes [1], 
however, this can be neglected for our purposes. The dipole tensor can be evaluated from the 
crystal structure. For the vanadium nucleus at the position ( )caar 2984.0 ,2641.0 ,9181.0=  
within the prime cell the coupling tenors d

ijA  was numerically calculated to have the following 
form in the crystal frame 
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= µγhd
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where Bµµµ =~  corresponds to the normalized paramagnetic moment. In this calculation 
virtually all the neighbors (105 nearest Ni2+ sites) have been taken into account. As all the 
vanadium sites within the prime cell are crystallographically equivalent, all the 51V nuclei have 
the same eigenvalues of the hyperfine tensors, although the principal axes change when moving 
from site to site within the prime cell. However, as we are dealing with powder samples, all the 
directions of the external magnetic field in the crystal frame are equally probable so that there is 
effectively only one 51V site. It is worth noting that the value of the local field produced at a 
certain nucleus is substantially suppressed with respect to the order-of-magnitude value 

mT 25~4 3
0 ⋅≈ µπµµ rSg iB  due to the symmetry of the crystal system. The frequency shifts 

locB⋅=∆ πγν 2  corresponding to the three eigenvalues of d
ijA  are sizable only if the 

maximum spin moment ( ) 8.21~ =+= SSgµ  is taken into account. In this case it amounts to 
kHz 15≈∆ν . However, one should not forget that due to exchange narrowing mechanism a 

significant reduction of the estimated static value is expected, and second, the magnitude of the 
average magnetic moment of the Ni2+ ion is in the paramagnetic phase only a fraction of the 
maximum moment 2103~ −⋅=µ  as can be calculated from the molar susceptibility. Thus also the 
direct electron-nucleus dipole coupling is of insignificant importance. 
 A possible way out is to introduce also anisotropic part of the transferred hyperfine 
coupling tensor. The expression for the linewidth due to fluctuating paramagnetic moments is 
then similar to that given by Eq. (3.10) 
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which applies to a further simplification that the magnetic field is directed parallel to the z-
principal axis of the hyperfine tensor [28]. To account for the experimentally observed width of 
the central transition, which is around kHz 600 =δν , the anisotropic part of the transferred 
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hyperfine tensor would have to be according to Eq. (3.10) about 60-times larger than the 
isotropic part. To estimate if this value is physically plausible let us again evaluate the hyperfine 
interaction of an unpaired vanadium 3d electron as it was done above for the 3s electron. 
Expression equivalent to Eq. (3.9) is [24] 

 mK 151
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4 3
3
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3 ⋅== b
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B
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p k

r
gA hγµ

π
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where the expectation value of the inverse cube of the distance between the 3p electron and the 
core, -3

3

3 Å 8.381 =
p

r , can again be calculated from the atomic wave functions for the V5+ 
ion [25]. The value an

pA3  is very close to the required one mK 10~60~
,, =≈ iso
ji

an
ji AA , which certainly 

throws a shadow of a doubt on this mechanism.  
 However, the polarization effect of the paramagnetic moments in the external magnetic 
field has been neglected so far. Namely, the average value of the spin moment at room 
temperature in the field of 6.34 T is 2105.1 −⋅=S  as can be deduced from the value of the 
static susceptibility. Due to the powder nature of the sample the transferred hyperfine coupling 
anisotropy is reflected in the broadening of the central-line transition according to the estimation  

 SAh an
ji ,0

~≈δν . (3.16) 

Interestingly, this expression yields the anisotropic hyperfine interaction mK 19.0~
, =an
jiA  

virtually identical to the estimated isotropic part and requires an acceptable fraction of an 
unpaired 3p electron at V5+ site of the order of couple of percents. 
  Another possible candidate to account for the broad central 51V NMR lines is the 
chemical shift anisotropy, which has been so far neglected, as it is usually not observable in 
magnetic systems due to the dominancy of the coupling of the nuclei with the paramagnetic 
electrons. However, as the above detailed analysis has shown, this latter coupling is severely 
attenuated by the rapid electron fluctuations. For this reason the anisotropic part of the chemical 
shift tensor can become a “chief player”. In this case the local magnetic field for the vanadium 
nucleus at site i would be of the following form 

 ( ) ∑ ⋅−−=
j

jjiii SAσBB ,0
~11

hγ
. (3.17) 

The origin of the chemical shift in diamagnetic substances is two-fold. First the electronic 
currents induced by the external magnetic field produce diamagnetic contribution to the local 
field at a given nuclear site, and second,  the distorted electronic shells produce a paramagnetic 
contribution. Both of the two mechanisms produce lineshift proportional to the external field. 
 For the nucleus of the V5+ ion it is quite common for the isotropic chemical shift to be 
negative and of the order of several hundred ppm [29, 30], with this value being closely related 
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to the coordination number of O2- ligands around the vanadium ion [29]. Moreover, for the VO4 
tetrahedra also a significant anisotropy of the chemical-shift tensor is quite characteristic. This 
parameter, which denotes the difference between the principal values and the isotropic part of 
the chemical-shift tensor, can be close to the value of the isotropic part [29]. From the linewidth 
of the central transition, kHz 600 =δν , it can be evaluated that the anisotropic terms of this 
tensor should be of the order of 450 ppm if this is the main broadening mechanism, which is 
again a reasonable value for the nucleus of the V5+ ion sitting in the center of an oxygen 
tetrahedron [29]. As the profile appears quite symmetric, the value of the asymmetry parameter 
should then be around ( ) ( ) 5.01312 ≈−−= σσσση , where σi stands for the principal values 

321 σσσ ≤≤  of the chemical-shift tensor. 
 If the chemical-shift tensor is introduced, we have to examine also its effect on the center 
position of the NMR absorption line. As the isotropic part of this tensor should be in VO4 
octahedra of the same order as the anisotropic components, the isotropic lineshift can be 
estimated to be kHz 3020 ==∆ δνν is , which can thus well be the origin of the difference of 
the center position measured at the lowest temperature and the expected center position of 51V 
spectra in PbNi2V2O8. 
 Thus it looks like that both the anisotropy of the transferred hyperfine coupling as well as 
the chemical shift anisotropy could explain the rather broad central NMR transition. A closer 
look of the detailed NMR spectrum of PbNi2V2O8 recorded at room temperature (Fig. 3.7a) 
reveals that the absorption line appears a bit anisotropic. This anisotropic feature can be most 
probably related to the anisotropy of these two interactions. Unfortunately, both broadening 
mechanisms scale linearly with the value of the external magnetic field, which makes them 
inseparable in a powder sample even when this parameter is changed. However, to show that the 
line-broadening and the shift are indeed of the magnetic origin, a comparison of the central-
transition line in the magnetic field of 6.34 T with a profile measured in almost three-times 
lower field of 2.35 T is shown in Fig. 3.7b. The scaling of the line position is rather good as the 
peaks are shifted with respect one to another only by 3%. Also the linewidth increases by 
increasing the field from 29 kHz to 60 kHz. However, the ration of the linewidth increase 2.1 is 
somewhat below the ration of the two corresponding field values, 2.7. In Fig. 3.7b where the 
spectra are plotted against the normalized frequency shift, the spectrum recorded at the lower 
value of the magnetic field appears for this reason broader. This is most probably the signature 
of the quadrupole broadening contribution, which becomes more important at lower fields as it 
scales with the inversed Larmor frequency. 
 Since the lineshape is relatively complex, the linewidth of the overall experimental 
absorption spectrum is a less informative and a less accurately defined parameter. For this 
reason the analysis of the second moment of the line seems the most reasonable approach. 
However, as evident from Fig. 3.6 the lineshape in general does not change significantly with 
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the temperature. This observation is a rather expected feature if one bears in mind that the shape 
of the absorption spectra determined by the quadrupole interaction and the chemical shift 
anisotropy is expected to remain more or less unchanged over the whole temperature range if 
there is no structural phase transition. It further suggests that the paramagnetic-electron spin 
dynamics remains unchanged on a rather long timescale of the nuclear magnetic resonance, 
which is in line with the mobile character of the Haldane spin excitations even in the low-
temperature range. A more detailed presentation of the second moment is given in the next 
section, where the comparison with the linewidth behavior in the doped samples is made. 
 

Absorption Profiles 

 
From all the above-mentioned arguments it would by delusional to think that one would be able 
to accurately fit the experimental powder lineshape considering all the possible mechanism that 
may be involved. For this reason, we present only a simplified justification for the appearance 
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Fig. 3.7: (a) Quadrupole split 51V NMR spectrum of the PbNi2V2O8 system at room
temperature compared with the modeled spectrum given by the solid line. The measured
peak at 71.7 MHz is due to copper impurities. (b) A comparison of the central line of the
51V NMR spectra at room temperature recorder in 2.35 T ( ) and 6.34 T ( ) and plotted
against the normalized frequency shift. 
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of the overall lineshape. We treat the quadrupole mechanism as the major interaction shaping 
the absorption profile and then introduce additional isotropic broadening, which makes the 
profile smoother. For a specific set of parameters ( )ϕθ ,cos  the spectrum would according to 
Eq. (2.32) and Eq. (2.33) consist of seven δ-functions representing the central line and the six 
symmetrically placed satellites. In line with Eq. (2.34) the “amplitudes” of these lines would be 
in the relation 7:12:15:16:15:12:7 . We have undertaken the task of calculating the powder 
average of the quadrupole absorption spectrum in a numerical manner. A uniform distribution 
of the parameters cosθ and ϕ has been assumed. The obtained spectrum was then additionally 
broadened using the convolution of the pure quadrupole spectrum with a Lorentzian distribution 
of the width corresponding to the central transition. The asymmetry parameter η = 0.88 was 
calculated from the position of only the four closest O2- ligands forming the VO4 tetrahedron 
with a particular vanadium ion, and the value of the quadrupole frequency was determined as 

kHz 85≈Qν . The resulting theoretical spectrum for the case when 105 points from the 
corresponding parameter space were taken into account is shown in Fig. 3.7a. 
 As expected, the numerically calculated absorption profile is only in a qualitative 
agreement with the experimental lineshape. The problem of the difference with satellites and the 
central line occurs because the satellites are a result of the first order perturbation while the 
central line is calculated in the second order. To calculate the absorption profile with a greater 
fidelity an exact knowledge of the anisotropic transferred hyperfine coupling is needed. In this 
case one should in principle jointly treat the quadrupole interaction and the hyperfine coupling 
in a perturbative manner. This would be a proper way to handle the problem since both of the 
interactions are of a comparable size when an average spin value in the paramagnetic state is 
considered. 
  
 
3.3 Magnetic Resonance Measurements on Doped Materials 

 
The magnetic resonance measurements on doped samples were aimed to provide a further 
insight into the impurity-doping ordering effect observed in the PbNi2-x(Mg,Co)xV2O8 

compounds. The responsible microscopic mechanism is believed to be the breaking of valence 
bonds representative for the Haldane ground state as explained in the introductory chapter. 
However, the introduced impurities drag along a variety of unexpected phenomena, among 
which is also the “order-by-disorder effect” observed for the first time in the Haldane system in 
PbNi2V2O8 [1]. For the liberated spins to exhibit a long-range order at low temperatures 
appreciable coupling between them is required, the nature of which is rather unclear. Since 
magnetic resonance techniques are able to probe a particular magnetic system on a local level, 
they seem to be an appropriate choice for addressing the remaining open questions.  
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 The materials used in the magnetic resonance experiments can be labeled as solid 
solutions. The position of the cation (Mg2+, Co2+) replacements for the Ni2+ ion is randomly 
distributed, however, the phase purity of all the samples was again verified by x-ray diffraction 
measurements. The structural measurements revealed that the cations effectively replace the 
Ni2+ ions while leaving the crystal structure virtually unaffected [16, 23, 31]. 
 

3.3.1 ESR Detection of Liberated End-Chain Spins in Doped Materials 

 
The majority of ESR measurements were performed in the X-band ( GHz 35.9=Lν ), however, 
few absorption spectra were recorded also in a high magnetic field at the Larmor frequency of 

GHz 96=Lν  in order to be able to discuss the possible broadening mechanisms present in the 
PbNi2-x(Mg,Co)xV2O8 system. 
 In the Mg-doped samples the broadening effect due to the introduced impurities is not so 
colossal as in Co-doped compounds. The spectra recorded at room temperature are presented in 
Fig. 3.12 appearing later in this section, where also the discussion on the possible broadening 
mechanisms in both families of materials in given. But first, let us focus on the temperature 
dependence of the ESR parameters obtained in the Mg-doped samples. The fitting of the powder 
absorption spectra remains satisfactory with the “broad”-Lorentzian function introduced by Eq. 
(3.1). The temperature dependence of the peak-to-peak width and the changes observed in the 
center position of the ESR spectra are presented in Fig. 3.8. A rather interesting feature of the 
doped materials is that the behavior of their parameters is much more complex than in the 
pristine sample. For instance, below room temperature the evolution of the linewidths in doped 
samples follows the decreasing behavior of the linewidth in the pure sample, however, the first 
minima are shifted towards lower temperatures and the increase below that temperature is much 
less intense. Second, a maximum of this parameter is observed around 30 K, where the signal in 
the pure compound, on the contrary, is not observable any more. The decreasing tendency of the 
linewidth is again reversed around 10 K. The center of the line follows very similar routine as 
can be seen from the g-factor. The temperature dependence of the latter parameter is thus 
roughly reversed with respect to the linewidth. 
 

Diverse nature of ESR Centers in Doped Samples 

 
The dependence of the g-factor implies that there are in fact two different contributions to the 
ESR signal in all doped samples. The presence of an additional kind of a paramagnetic center is 
further supported by the ESR intensity, which exhibits an increase below 20 K (see Fig. 3.9). 
This is once again atypical for the pristine sample where the presence of the spin gap drives the 
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intensity of the detected signal towards zero. Moreover, it seems that the deviation of all the 
parameters from the temperature dependences characteristic for the parent compound nicely 
evolves with the level of doping. This fact indicates that impurities indeed induce additional 
ESR signal, becoming increasingly important at temperatures around and below the spin-gap 
value. 
 The temperature evolution of the absorption spectra described above can be easily 
understood if the liberated end-chain spins are considered. Namely, the spectra can be imagined 
to be composed of two component, the high-temperature broad signal characteristic for the 
Haldane material, and the low-temperature contribution with a slightly narrower linewidth in the 
crossover regime around 50 K. If the two spin centers are coupled so that their exchange 
coupling is much stronger than their g-factor difference, one expects the two contributions to the 
absorption spectrum not to be resolved as a direct consequence of rapid spin fluctuations arising 
from this exchange coupling [32]. The expected g-factor for the “exchange-averaged” line 
would then read 

 
21
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Fig. 3.8: The temperature dependence of the X-band ESR (a) peak-to-peak linewidth and
(b) g-factor for the PbNi2-xMgxV2O8 family. The inset to part (a) shows the linear
dependence (solid line) of the linewidth on the doping level at 5 K. 
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where χ1,2 stands for the corresponding susceptibilities of the two ESR centers at a given 
temperature. At higher temperatures, where the susceptibility of the broad Haldane signal is 
dominant, the g-factor in doped compounds follows the one measured in the parent material. 
However, at temperatures around 50K the high-temperature signal begins disappearing and the 
low-temperature paramagnetic centers take over the initiative. For this reason the signal 
experiences a shift towards higher g-values characteristic for free electrons liberated at chain 
ends by the nonmagnetic Mg2+ impurities. The same argumentation also applies to the 
temperature dependence of the linewidth.  
 As the values of the local minima and maxima of the g-factor and the linewidth as well as 
the linear low-temperature increase of the ESR intensity (inset to Fig. 3.9b) evidently scale with 
the doping level, one can safely state that the origin of the low-temperature signal are the broken 
Haldane bonds due to the presence of nonmagnetic impurities, which tear apart the uniform 
chains. Virtually simultaneously with our observations [7] also Smirnov et al. published similar 
remarks about the presence of the liberated 21=S  degrees of freedom. Their conclusions were 
drawn both on the paramagnetic as well as the antiferromagnetic resonance measurements [33]. 

Fig. 3.9: The temperature dependence of the ESR intensity of the PbNi2-xMgxV2O8

compounds (a) in the temperature range between room temperature and 5 K and (b) in the
low-temperature regime. The solid lines correspond to fits with the Curie-Weiss model
given by Eq. (3.30). The inset to figure (b) shows the scaling of the intensity at 5 K. 
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Coupling of Liberated End-Chain Spins 

 
The low-temperature spectra observed in vacancy-doped PbNiV2O8 compounds somewhat 
differ from the typical 21=S  end-chain ESR signals observed in the prototypical Haldane 
systems NENP. Namely, in our case they are appreciably broader (more than on order of 
magnitude) from all the signals induced in the latter system by nonmagnetic impurities (Zn2+ 
[34, 35] and Cd2+, Hg2+ [34]) and comparable, although still broader, than the cases when 
dopants in NENP had spin [36]. Trying to explain the unexpectedly broad low-temperature ESR 
lines a comparison of the spectra corresponding to the PbNi1.85Mg0.15V2O8 sample recorded at 5 
K in X-band and in high magnetic field ( GHz 96=Lν ) is made in Fig. 3.10. The peak-to-peak 
linewidths are almost unchanged with the corresponding values increasing from 

( )T 5429.0=X
ppBδ  to ( )T 5445.0=HF

ppBδ  when increasing the resonance frequency by 
approximately a factor of 10. If the linewidth was due to individual noninteracting 2/1=S  end-
chain spins the width should have scaled linearly with the frequency as a result of the g-factor 
anisotropy as was observed in vacancy-doped NENP [34]. In this case deviation of the lineshape 
towards an anisotropic shape would be expected. However, if the liberated spins are coupled the 
effective anisotropy Hamiltonian of the coupled-spin system should be of the form 2* ~

zSD , 
where αS~ represents the spin operator of the two-spin system. This interaction makes the 
linewidth non-frequency dependent in the first order. Such fictitious coupling term between two 
interacting 2/1=S  spins can be shown to result from the magnetic dipole interaction and the 
anisotropic exchange, which may be for a ferromagnetically coupled spins both treated 
similarly. The effective single-ion anisotropy term is then given in the case of the uniaxial 
symmetry by [37] 

 ( )
2

3
4

3 3

2
0* d

r
gD B −−= µ

π
µ , (3.19) 

where the first term is due to the dipolar interaction between spins at a distance Å 04.5=r  and 
the second term is the symmetric anisotropic exchange, which is of the order ( ) Jggd ′∆= ~2  
with J ′~  as the effective exchange constant as explained in chapter 2. The magnetic field 
emerging from the dipolar coupling can be evaluated from the above equation, mT 45=dB . 
The contribution to the linewidth of the second term, on the other hand, is of the order of 

mT 9023 ≈Bgd µ  if the next-nearest neighbor interaction J ′  between Ni2+ spins introduced in 
the opening section of this chapter is taken as an approximation for the effective exchange 
coupling J~′  between 21=S  spins. Though the later statement seems to be an overestimation 
since the next-nearest exchange in the undoped chain should be dominantly determined by the 
overlapping of the Ni2+ and O2-orbitals, the joint contribution of the two mechanisms still does 
not account for the experimentally observed linewidths, which turn out to be as large as 515 mT 
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at 5 K in the case of the largest doping level (see Fig. 3.8). Moreover, the above estimations 
correspond to the static limit when the exchange narrowing due the spin fluctuations is 
disregarded. 
 Clearly, the presented simple picture does not offer a satisfactory explanation for the 
observed low-temperature ESR signal behavior, as the corresponding anisotropy contributions 
are not large enough. Second, the J’ coupling is reported to be antiferromagnetic, which implies 
singlet ground state of the two liberated end-chain spins. Evidently, our experimental findings 
of the intensity of the low-temperature signal growing with the decreasing temperature are in a 
contradiction with this picture. There is, however, an additional binding mechanism coupling 
the two spins neighboring the spin vacancy site providing that also interchain coupling is 
present. Shender and Kivelson proposed the following mechanism for the doped Haldane 
system [38], which is schematically presented in Fig. 3.11. By virtue of the interchain exchange 
coupling the end-chain spin at one of the sites neighboring the impurity induces a “pocket” of 
staggered magnetization on the neighboring chain. This “pocket” couples again to the end-chain 
spin on the other side of the impurity-broken chain. This effective second order coupling is 
dependent on the number of the neighboring chains Z, the staggered “susceptibility” πχ  and the 
interchain exchange ⊥J  through the expression 2

⊥=′ JZJ eff πχ . It was initially proposed that 
such an effective coupling should be of a antiferromagnetic nature, however, Zheludov et al. [4] 
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Fig. 3.10: A comparison of (a) the high-field (νL = 96 GHz) ESR spectrum with (b) the
X-band spectrum (νL = 96 GHz) recorded at 5 K in the PbNi1.85Mg0.15V2O8 compound.
Note that the magnetic field range is the same in both cases. 
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argued that it should really be ferromagnetic as it is also obvious from our schematic picture. It 
should also be stresses that the end-chain 21=S  spins are delocalized staggered “pockets”, 
which roughly extend ξ lattice sites away from the impurities, ξ being the correlation length. 
For clarity this delocalized nature of the impurity-liberated spins is not shown in Fig. 3.11. 
From the parameters obtained by inelastic neutron scattering experiments the effective 
ferromagnetic chain-end spin coupling was roughly estimated to be K 2≈′effJ , which is of the 
same order as the next-nearest neighbor antiferromagnetic uniform-chain coupling. 
 Due to the semi-quantitative nature of this prediction and the errors of the inelastic 
neutron scattering parameters originating from the powder nature of the investigated samples 
[4] the effective exchange could have a rather different value. Our experimental low-
temperature spectra of Mg-doped samples predict higher values of end-chain-spin exchange, 
which can be then the origin of appreciably larger magnetic anisotropy as given by Eq. (3.19). 
The exchange narrowing mechanism averages the contribution of such anisotropy term to the 
ESR linewidth at temperatures much higher than the critical ordering temperature due to rapid 
spin fluctuations. However, in the vicinity of the phase transition to the magnetically ordered 
state, occurring in our case around 3.5 K or below this temperature depending on the doping 
concentration, a critical slowing-down of spin fluctuations is expected. The theory of the critical 
ESR linewidth broadening was developed for the case of the single-ion anisotropy [39] and the 
dipolar anisotropy [40]. As explained in the subsection 2.1.6 the broadening of the resonance 
lines in the vicinity of the antiferromagnetic phase transition is a joined effect of the critical 
enhancement of the staggered spin correlations zz

oo
SS qq −  corresponding to the wave vector in 

the center of the antiferromagnetic zone q0 (static effect) and the reduction of the relaxation rate 
)( 0qΓ  of the fluctuations of staggered magnetization due to the increase of the average life 

time of the clusters of antiferromagnetically ordered spins (dynamic effect). In the close vicinity 
of the phase-transition temperature the antiferromagnetic mode dominates and dictates the 
linewidth [41] 
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with ξ as the correlation length. 
 The low-temperature increase of the linewidth below 10 K in all the doped samples at 
first sight seems to correspond to critical slowing down of spin fluctuations just above the 
ordering temperature. Similarly, the low-temperature deviations of the g-factor from the free-
electron value towards lower values correspond to a building-up of sizable internal magnetic 
fields [42]. However, such critical effects are usually expected to be observable only in the close 
vicinity of the phase transition ( ) 1.0≤− NN TTT . On the other hand, the low temperature 
increase of the linewidth and the shift of the g-factor towards lover values resemble the behavior 
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happening in all the samples below 100 K. In that temperature region the observed dependence 
was successfully attributed to the presence of the single-ion anisotropy, which is as we have 
shown also the property of the paramagnetic centers active at low temperatures. 
 The consequence of the “pockets” of staggered magnetization on the chains neighboring 
the spin vacancy site is two fold [7]. First, they provide the basics for the coupling between the 
two liberated spins, and second, the ordered Ni2+ spins inside staggered magnetization also give 
rise to an effective dipolar interaction with the end-chain spins. This coupling has been 
estimated to have the value of approximately 130 mT [7] taking into account the exponentially 
decaying nature of the average spin moments with the distance from the impurity site within the 
staggered “pockets”, which is an appreciable value, though still far to small to account for the 
experimental observations. The fact that the low-temperature linewidth increases with the level 
of doping implies that its nature cannot be entirely explained by the anisotropic interactions 
between the two liberated spins neighboring a particular impurity site (Eq. (3.19)). The 
comparison of the line broadening obtained from the ESR measurements at 5 K reveals that the 
linewidth increase is virtually linear as shown in the inset to Fig. 3.8a. Such a linear dependence 
has been attributed before to the coupling between the delocalized clusters of the end-chain 
spins [43]. Since each impurity induces end-chain spin clusters, which decay with the 
characteristic correlation length, the neighboring clusters between two consecutive impurities on 
a particular chain interact with each other. Apart from the effective single-ion anisotropy 
interaction given by Eq. (3.19) for each effective 1=S  impurity-induced spin originating from 
the two ferromagnetically coupled 21=S  end-chain spins, there is thus additional magnetic 
coupling between the effective 1=S  spins progressively getting larger with the doping level. 
The extrapolated zero-doping-level value of the linewidth at 5 K mT 1770 ==x

ppBδ  can thus be 

Fig. 3.11: Effective ferromagnetic coupling of the two S = 1/2 end-chain spins liberated
next to the impurity site through the “pocket” of staggered magnetization induced on one
of the neighboring chains. For clarity the delocalized nature of the end-chain spins is not
shown. 
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assigned to be due to the intrinsic magnetic anisotropy of uncoupled effective 1=S  impurity-
induced spin. 
 The temperature dependence of the intensity of the low-temperature ESR signal as 
presented in Fig. 3.9 can be interpreted in the light of cooperative three-dimensional phenomena 
resulting in the Curie-Weiss-like behavior,  

 
N

ESR TT
CI
−

= . (3.21) 

From Fig. 3.9b one can safely conclude that the agreement of the above model with the 
experiments is decent, especially for higher level of doping. The fitting parameters are collected 
in Table 3.1. The Néel temperature for all the samples was predetermined by the value of the 
phase-transition temperature obtained from the specific heat measurements [5].  
 
Table 3.1: The fitting parameters of the Curie-Weiss law given by Eq. (3.21) corresponding to 
the low-temperature ESR signal in PbNi2-xMgxV2O8. The constant C and the ratio C/x have 
arbitrary units. 
 

x 0.04 0.08 0.10 0.12 0.15 0.24 

TN 2.5 K 3.0 K 3.3 K 3.4 K 3.5 K 3.4 K 
C 4.7 9.0 13.5 15.2 18.9 27.4 

C/x 118 113 135 127 126 114 

 
The observed scaling of the constant C with the level of doping x as evident from the ratio C/x 
speaks in favor of liberated spins (strongly ferromagnetically coupled as we have discusses) 
being responsible for the occurrence of the low-temperature signal. However, apart from the 
thee-dimensional cooperative mechanism being responsible for the rapid decrease of the 
intensity of this signal with temperature another mechanism has been considered in literature to 
explain such behavior [44]. Namely, the coupling of the impurity-induced spins to the thermal 
excitations on the Haldane chains causes similar decay of the ESR signal. We have also 
considered this mechanism to explain out ESR experiment and have concluded that the 
agreement between the theory and the experiment is of about the same quality [7]. Thus it seems 
most probable that the low-temperature ESR intensity is determined by both the three-
dimensional antiferromagnetic correlations and the one-dimensional thermal excitations on the 
chain. 
 Smirnov et al. argued in their ESR report [33] that the liberated spins should remain 
paramagnetic, i.e., are not coupled appreciably, at low temperatures, which is exactly opposite 
to our picture of strongly ferromagnetically coupled end-chain 21=S  spins. Their assumption 
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was based on their observation of the paramagnetic signal in doped samples just above the 
transition temperature, which showed no zero-field splitting. However, their absorption lines 
were considerably broad and also the powder nature should average out such features. In fact, a 
conformation consistent with our hypothesis came latter on by precise specific heat 
measurements performed by Masuda et al. [45]. They fitted the observed temperature 
dependence of the heat capacity to the Schottky-dependence and concluded that one spin 
vacancy effectively induces one S = 1 spin. 
 It should be also emphasized that in the mid-temperatures crossover regime a single 
almost Lorentzian resonance line is observed. This indicates that the end-chain spins are 
strongly coupled to the triplet Haldane excitations. Thus the one-dimensional excitations seem 
to coexist with the three-dimensional correlations emerging from the end-chain spins. The two 
other possibilities that either the Haldane excitations would destroy the staggered magnetization 
corresponding to the delocalized nature of the end-chain spins or that mobile excitations do not 
penetrate into these staggered structure of spins can be ruled out as also recently reported by 
Smirnov et al. [46]. 
 

Impurity Broadening of Ni2+ ESR Absorption Lines 

 
Now, let us look back at the ESR spectra of PbNi2-x(Mg,Co)xV2O8 compounds recorded at room 
temperature and focus on their dependence on the level of doping. As evident from Fig. 3.12 
both types of impurities, Mg2+ (S = 0) and Co (S = 3/2), cause line broadening with respect to 
the parent compound. The broadening initiated by vacancies is clearly present as the linewidth 
in the case of the highest doping level (x = 0.24) is by the factor of 1.22 higher than the 
linewidth in the undoped material. On the other hand, the effect of dopants having spin is much 
more drastic. Already at the doping level of x = 0.08 the spectrum is on the limit of 
observability in X-band and the linewidth is enlarged by a factor of approximately 2.5. Thus the 
extra broadening mechanism responsible for the observed effect has to incorporate the spin 
nature of the dopants. 
 As presented in Fig. 3.12a all room-temperature spectra could be satisfactory fitted by the 
“broad”-Lorentzian profile given by Eq. (3.1). However, a spurious narrow signal is present in 
several different samples at the position corresponding to the free-electron g-value. This later 
contribution to the ESR spectra does not show any consistency of changing with the level of 
doping or the spin nature of the dopants. On the contrary, it proves to be sample-dependent as 
the intensity of the narrow line varies from sample to sample within the same nominal 
stochiometry. For this reason it can be safely attributed to the presence of impurities in the 
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sample. As the intensity of the narrow component does not exceed a percent of the total ESR 
intensity in any of the cases, such impurities are also invisible in x-ray diffraction patterns.  
 Let us begin with the case of the vacancy doping where the broadening effect is not that 
prominent. The introduced vacancies do not have any sizable effect on the crystal structure of 
the materials as evident from the detailed structural measurements [16, 23]. Since the single-ion 
anisotropy at Ni2+ sites as the dominant broadening mechanism depends on the local structure 
(predominantly of the NiO6 octahedra), it can be assumed that it does not change much when 
dopants are introduced. If one supposed that the exchange coupling of the “boundary” S = 1 
spins is greatly altered it would not be hard to imagine a possible mechanism leading to the 
doping-dependent linewidth. Namely, the recorded spectra are exchange narrowed, with the 
exchange constant entering the denominator of the expression for the expected linewidth (see 
Eq. (2.17)). If the vacancies decrease the average value of the exchange interaction sensed by 
Ni2+ spins this mechanism would lead to the broadening of the lines. In the extreme case when 
the exchange of the boundary Ni2+ spins with the neighboring impurity sites was completely 
diminished the average exchange would scale with 1-x/2 leading in the case of 24.0=x  to an 

Fig. 3.12: (a) The evolution of X-band ESR spectra in PbNi2-x(Mg,Co)xV2O8 upon the
level of doping recorded at room temperature, with black lines corresponding to “broad”-
Lorentzian curves (Eq. (3.1)) with an additional narrow component where needed. The
level of the impurity broadening is shown for (b) Mg2+ and (c) Co2+ impurities with the
latter type causing linear increase of the observed linewidth. 
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enhancement of the linewidth by a factor of 1.13. As reported above, the measured broadening 
effect is rather more pronounced and second, there is no real background to send the exchange 
to zero. On the contrary, the overlap of the orbitals of the two ions is still present. However, the 
lack of one spin on one of the two interacting sites can have a pronounced effect, so that only a 
complete calculation based on atomic-orbital overlap can resolve the issue on to what extent the 
average exchange interaction is changed. 
 The changes of the average exchange probably cannot account for the experimentally 
observed broadening. Another mechanism, presumably being important in the case of one-
dimensional magnetic systems, is the effect of the introduced impurities on the spin diffusion 
[47]. The diffusional decay of the spin correlation function can play a crucial role in 
determining the absorption spectrum in the low-dimensional systems where the exchange 
pathways are severely limited. The impurity introduced into a spin chain alters the diffusion rate 
along the chain, where the rate across the impurity site depends on the size of the impurity spin 
and the coupling of the end-chain spins to the impurity spin [48]. If the impurity is nonmagnetic 
the diffusion rate is greatly suppressed, which should cause appreciable broadening. However, 
in the case of the PbNi2V2O8 system the interchain exchange is appreciable, which somewhat 
alleviates the intensity of the broadening effect and can legitimately account for out 
measurements. 
 When changing the impurity from Mg2+ to another spinless cation Zn2+ the characteristics 
of the low-temperature antiferromagnetic ordering do not change [49]. This fact indicates that 
the impurities are not directly involved in the formation of the long-range order in vacancy-
doped PbNi2V2O8. However, when the spinless dopant is exchanged with an impurity 
possessing a spin, the situation is radically changed. Namely, in the case of Cu2+ doping 
( 21/ S = ) no phase transition could be detected down to 2 K for low doping concentrations 
[49], while Co2+ ( 23/ S = ) ions appreciably increase the phase-transition temperature, which 
rises to 7.2 K in the case of PbNi1.92Co0.08V2O8 [31]. 
 Our ESR measurements also show a severe difference between the Mg- and the Co-doped 
case. The observed profiles can be described by single “broad”-Lorentzian line, which speaks in 
favor of strong exchange coupling of the two spin species. When a cobalt ion Co2+ (3d7 
configuration) is placed in an octahedral environment of cubic symmetry the lowest lying 
orbital state stays triply degenerated even after the spin-orbit coupling is introduced. A small 
distortion of the cubic symmetry of the ligands, as in our case, splits this ground-state 
degeneracy. However, a considerable orbital character is expected to remain in the orbital 
ground state. For instance, if a Co2+ ion is octahedrally surrounded by ligands producing crystal 
field of cubic symmetry the g-factor is isotropic but significantly shifted with respect to the free-
electron value, i.e., g = 4.3 [13]. The g-factor tensor becomes anisotropic when the local 
symmetry is lowered, however, the mean g-factor remains around the above value. In our case 
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there is no evidence of a spectral component present at such a high value of the g-factor. We can 
thus conclude that the observed signal in the PbNi2-xCoxV2O8 compounds is due to Ni2+ ions. 
 The extreme broadening of the ESR spectra due to the presence of a small concentration 
of Co2+ impurities has been reported before in several different systems [32, 50]. The presence 
of strong spin-orbit coupling in Co2+ ions results in this ion being a fast relaxing one. The 
phonons, which modulate the local crystal fields, cause rapid spin-lattice relaxation of the non-
Boltzman Co2+ spin density. The spin lattice relaxation time can be of the order of 10-12 s at 
room temperature [32]. The extreme broadening can be then attributed to the Co-Ni exchange 

*J  combined with the Co2+ spin-lattice relaxation. The effect of the cobalt impurity on the 
linewidth is determined by the relative rate at which the magnetic energy flows from the host 
system to the impurity system with respect to the rate for the energy flow between the impurity 
system and the lattice. The expected linewidth is then expressed by the equation [32] 

 impBBB δ
η

ηδδ
−

+=
10 , (3.22) 

where δB0 and δBimp correspond to the linewidth of the pure system and the contribution of the 
dopant, respectively, while η represent the ratio between the rate of the impurity’s spin-lattice 
relaxation and the host-impurity energy transfer rate determined by the exchange coupling of 
the two spin species. When the spin lattice relaxation is slow compared to the characteristic time 
of the exchange the “bottleneck effect” is present. Therefore, a spin-lattice relaxation rate of the 
same order as the host-impurity exchange rate is required before relaxation effects significantly 
broaden the resonance. 
 The comparison of the temperature evolution of the ESR linewidths in the parent and the 
Co-doped material with the lowest impurity concentration (x = 0.02) is presented in Fig. 3.13. 
This level of doping turns out to be the only one that offers traceable ESR signals in the X-band. 
As clearly illustrated in the inset of this figure, the difference between the linewidth of the 
doped and the parent samples grows with temperature up to around 150 K. Above the latter 
temperature it approximately settles at around mT 120≈impBδ . The small downturn at higher 
temperatures will be discussed later. The spin-lattice relaxation rate of the Co2+ impurities is 
temperature dependent, due to the changes of the phonon density with the temperature. It 
increases with increasing temperature and is in our case approximately of the same order as the 
host-impurity spin correlation time around 55 K (see Fig. 3.13), which seems to correspond to a 
mid-temperature point between the “bottleneck” regime and the strong-impurity-relaxation 
regime. Spin-lattice relaxation is expected to be due to Raman two-phonon processes and can be 
written as [51] 
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Here θD stands for the Debye temperature in the Debye model of the phonon spectrum [52], the 
parameter x is defined as Tkx Bωh=  and the constant a depends on the strength of the spin-
phonon coupling. Both of the constants are not known, however, the latter one does not occur in 
the expression for the expected linewidth (Eq. (3.22)) if we set ( ) 1K 55 =η  as the experimental 
impurity broadening reaches half of the saturated value at the temperature of 55 K (see inset to 
Fig. 3.13). In this case the temperature-dependent ratio of the impurity spin-lattice relaxation 
rate to the host-impurity exchange relaxation rate can be expresses as 

 ( ) ( )
( )TT

TT
1

1 K 55=η . (3.24) 

The fit of the model described through the Eqs. (3.22)-(3.24) with the experimental impurity-
dependent linewidth for the PbNi1.98Co0.02V2O8 compound is shown in the inset to Fig. 3.13. The 
best agreement is reached when the Debye temperature is set to K 500=Dθ  (solid line). This is, 
in fact, the only free parameter of the model if the saturated value of the impurity-induced 
linewidth is taken as mT 120=impBδ , which seems to correspond to the experimental behavior 
most accurately. The obtained Debye temperature has a reasonable value. However, to see the 
real effect of this parameter on the temperature dependence of the impurity-induced broadening, 
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Fig. 3.13: A comparison of the temperature-dependent ESR linewidth in the parent
PbNi2V2O8 ( ) and PbNi1.98Co0.02V2O8 ( ) compounds. The inset shows a bottleneck-
type of the difference between the linewidth of the two materials explained by rapid spin-
lattice relaxation of Co2+ ions. The lines represent the predicted curves for the Debye
temperature values of K 300=Dθ ( ), K 500=Dθ ( ) and K 700=Dθ ( ). 
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the corresponding curve is compared with the curves obtained for somewhat different values of 
the parameter θD; K 300=Dθ (dashed line) and K 700=Dθ  (doted line) in the inset of Fig. 
3.13b. As evident the slope of these curves depends on the Debye temperature considerably, 
which allows us to make a final estimation of this parameter in the PbNi2V2O8 system, 

K )50(500=Dθ . Unfortunately, no other measurement yielding the Debye temperature of the 
investigated system has been reported yet, which leaves us with no reference. However, as 
already mentioned the obtained Debye temperature has a reasonable value, which further 
supports the otherwise very pleasing agreement between the experiment and the theory. 
 The temperature dependence of the impurity-induced contribution to the ESR linewidth 
seems ho have a maximum around 150 K, which contradicts the model prediction of the 
monotonic dependence. A possible scenario would be that the presence of the impurities 
possessing spin alters the decay of the spin correlation function of the Ni2+ system due to the 
coupling of the host spins with the impurity spins. As latter spins are strongly coupled to the 
lattice they effectively act as sinks for the transfer of the magnetic energy from the spin to the 
lattice system. The resulting rapid decay of nonequilibrium spin density at the impurity sites can 
significantly change the development of the short-range spin correlations.  
 The saturated impurity-induced contribution to the host-spin ESR linewidth obtained 
from the above fitting procedure, mT 120=impBδ , can be also theoretically described. In the 
limit when the isotropic exchange between the impurity and the host spins is considered as the 
leading impurity-host interaction, this contribution to the linewidth has the following form in 
the limit of infinite temperature [50] 

 ( ) ( )
23

132
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1 **2* xSSJ
g

B
eB

imp ωµ
δ
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where *S  represent the size of the impurity spin. In the above expression the characteristic 
exchange frequency governing the decay of the host-spin relaxation function should be 
determined by the value of the host-host exchange, ( ) 22 312 h+′= SSZJeω . The resulting 
host-impurity exchange coupling is then evaluated from the experimental parameters to be 

K 11* ⋅= BkJ , a value an order of magnitude below the Ni-intrachain exchange. The cobalt 
spin-lattice relaxation time, which is approximately equal to the impurity-host spin correlation 
time around 55 K, is thus of the order of 5⋅10-12 s at this temperature.  
 It is also worth emphasizing that Eq. (3.25) yields a linear dependence of the ESR 
linewidth increase upon the doping concentration. This fact is clearly manifested in the case of 
PbNi2-xCoxV2O8 compounds as apparent from Fig. 3.12c. Second, we argued above that the 
observed ESR signal corresponds to the Ni2+ spins as only a single Lorentzian line is observed. 
This argument can now be endorsed by the rapid spin-lattice relaxation of the single-ion Co2+ 
impurities, which enormously broadens the signal of the Co2+ spin system. 
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3.3.2 Competition of 1D and 3D Spin Correlations as Revealed by NMR 

 
The difference of the outcome of the 51V NMR measurements performed on the pristine 
PbNi2V2O8 sample and the (Mg,Co)-doped samples is quite intriguing. As in ESR experiments 
also in NMR the nature of the doping ion seems to play an important role in the development of 
the low-temperature absorption spectra. 
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Fig. 3.14: 51V NMR spectra at selected temperatures in (a) PbNi1.88Mg0.12V2O8, (b)
PbNi1.76Mg0.24V2O8, (c) PbNi1.98Co0.02V2O8, and (d) PbNi1.92Co0.08V2O8 with the vertical
line corresponding to the line position of the parent material at 4.2 K. 
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 At high temperatures with respect to the value of the isotropic exchange J all the 
measured spectra are qualitatively similar to the undoped case as can be verified by comparing 
Fig. 3.14 and Fig. 3.6a. There is, however, an additional narrow component present in both Mg-
doped samples. The nature of this queer feature was initially argued to be possibly intrinsic to 
the system [9]. However, it is probably due to a small amount of a different phase or due to 
impurities as also observed by ESR in these samples. Due to the fact that the intensity of the 
narrow component is small compared to the broad component, it will be neglected in what 
follows.  
 Obviously, the exchange-narrowing mechanism, which is effective in the case of the 
undoped sample, has a major role also in the doped samples. When decreasing the temperature, 
in contrast, a pronounced distinction of NMR spectra in different samples is found. The 51V 
spectra become broader compared to the undoped case. In addition to the temperature 
dependence the degree of broadening is dopant dependent as well as it depends on the level of 
doping. Furthermore, the broadening of the Co-doped samples seems to result in symmetrical 
lineshapes at low temperatures in a striking contrast to the Mg-doped samples, which exhibit 
lineshapes of pronounced anisotropy at very low temperatures. This fact indicates that the 
character of the spin-correlation functions is essentially different when Mg2+ is replaced by Co2+ 
as will be further elucidated below. This fact may well be responsible for the enhancement of 
the Néel temperature in cobalt-doped samples. 
 

Coupling of 51V Nuclei to Electronic System 

 
First, let us focus on the first moment (M1) of the measured NMR absorption lines. Fig. 3.15a 
demonstrates that dissimilarity in the temperature evolution of this parameter in Mg-doped 
samples exists with respect to the undoped compound below approximately 120 K. The 
monotonic decrease of M1 in the pristine sample can be, as already emphasized, related to the 
spin-gap character of the Haldane state. However, both Mg-doped samples exhibit a minimum 
of the first moment, occurring at 7 K and at 14 K in the PbNi1.88Mg0.12V2O8 and 
PbNi1.76Mg0.24V2O8 samples, respectively. The trend above the minima can be assigned to the 
presence of 1D excitation, which survive down to very low temperatures also in doped samples. 
The observed reverse in the behavior of the center position below the minima suggests that 3D 
spin correlations become substantial, which can be understood as a precursor effect due to the 
vicinity of the phase-transition temperature. Such behavior is in accordance with the ESR 
results presented in the previous subsection, where it was shown that both kinds of magnetic 
excitations seem to coexist in the “mid-temperature” range. The observed evolution of M1 in 
Mg-doped compounds, however, somewhat defers from the temperature dependence of the 
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magnetic susceptibility in these samples at low temperatures [1]. Susceptibility of the 
PbNi1.76Mg0.24V2O8 sample, for instance, shows a monotonic increase with decreasing 
temperature with the value corresponding to 4.2 K being around 6-times greater that the room-
temperature value.  
 One has to bear in mind that measuring magnetic moment corresponds to a static 
response, while the NMR spectra reflect also the dynamical aspect of the electronic spin 
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75

correlations. Thus dissimilarities are expected to set in especially near the phase transitions, 
where the slower decay of the electron spin-correlation functions significantly affects the 
appearance of the NMR spectra [53]. Second, it has to be stressed that the magnetic 
susceptibility measurements were performed in a low magnetic field of 0.1 T while the resonant 
field in the NMR experiments is much higher ( T 34.60 =B ). It turns out, as will be discussed 
below, that external magnetic field of the order of several tesla significantly alters the nature of 
spin ordering in doped samples. For the above-mentioned reasons it is not surprising that NMR 
center position deviates from the dependence expected purely on basis of the magnetic 
susceptibility. 
 On the contrary to the Mg-doped samples, in Co-doped samples the agreement between 
M1 (Fig. 3.15c) and the spin susceptibility [31] is much better. However, as both the Mg-doped 
and the Co-doped compounds undergo a magnetic phase transition to reportedly the 
antiferromagnetic ground state [1, 23, 31], the apparently dissimilar behavior is rather 
surprising. Moreover, the low-temperature 51V NMR spectra belonging to the two different 
dopants are radically different indicating that the spin correlations evolve in much different 
manner in the two families of materials. In Fig. 3.15b and 3.15d the analysis of associated 
second moment is presented for the Mg-doped and Co-doped systems, respectively. The relative 
changes of the linewidth are much more drastic in the case of vacancy doping, though, it has to 
be emphasized that the concentrations of magnesium as a dopant are higher than the 
concentration of cobalt. 
 

Magnetic-Ordering Effects Reflected in NMR Spectra of Mg-Doped Compounds 

 
The temperature evolution of the second moment shows a drastic dependence on the level of 
Mg impurities, an effect again evidently expressed below approximately 120 K. While in the 
pure sample this parameter is virtually temperature independent, in both Mg-doped samples the 
increase of the linewidth below this temperature is substantial. Additionally, the absorption 
spectra experience also a qualitative change from the high-temperature symmetric to a low-
temperatures asymmetric powder-like lineshape. In the vicinity of the phase-transition point the 
strength of the exchange narrowing mechanism must be significantly suppressed with respect to 
the parent material, which would correspond to slowing-down of electronic spin fluctuations. 
More precisely, the typical correlation time of spin fluctuations must become comparable with 
the time-scale of the NMR spin-spin relaxation. Large increase of the linewidth thus again 
suggests on the development of 3D spin correlations in doped samples as explained below. In 
principle, there are, however, different possible mechanisms, which could lead to the observed 
anisotropy of absorption spectra. 
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 The expected temperature variation of the lineshape can be predicted from the known 
structure of the material and a presumed spin arrangement. In this context it is instructive to first 
model the NMR lineshapes and calculate the corresponding linewidth for various possible kinds 
of interactions of vanadium nuclei with the electronic system in a static limit, which should 
apply for the spin-ordered state. Second, the spin impurities either of a spinless nature or not 
introduce inhomogeneities into the system. However, as our samples are “solid solutions” the 
impurities are randomly distributed, which seems as the major obstacle for theoretical 
calculations of the NMR spectra. Since the impurities are in average relatively far away (in the 
case of the highest Mg doping level there is in average seven Ni2+ sites between consecutive 
impurity sites), let us first treat the spin chains as uniform. This approximation can be made in 
NMR in a contrast to the low-temperature ESR measurements since the NMR detects an 
average signal of all the vanadium nuclei while the ESR measures only the end-chain spin 
clusters at low temperatures.  
 The dipolar coupling of a particular 51V nucleus with surrounding paramagnetic moments 
is the first suitable candidate for describing the low-temperature lineshape evolution. For the 
paramagnetic phase it was already shown (Eq. (3.13) and the discussion below it) that the 
contribution of the dipolar coupling between a particular vanadium nucleus and surrounding 
paramagnetic moments is negligible, kHz 15≈δν , compared to the observed line-broadening 
even if one supposes an unrealistic completely ferromagnetic arrangement of paramagnetic 
centers. However, in the case of the antiferromagnetic transition the wave-vector-dependent 
susceptibility corresponding to the center of the antiferromagnetic zone is expected to diverge 
and second, the fluctuations within the emerging clusters are supposed to slow-down. Both of 
the spin-ordering effects can of course have a radical effect on the NMR absorption profiles 
[53]. For this reason the antiferromagnetic ordering of spin moments should be of particular 
interest as the doped systems encounter a transition to antiferromagnetically ordered state at low 
temperatures. This situation will be in fact considered below in the relation to the case of Co-
doping, where it will be shown that frequency shifts of maximum 0.5 MHz are expected for the 
ordered phase. However, in the case of magnesium as the dopant it is not of an actual interest in 
as high magnetic fields as we use in our NMR experiments.  
 It has been experimentally verified by different techniques that the application of 
relatively small magnetic fields changes the magnetic ground state and that the 
antiferromagnetically ordered state is not the ground state anymore. By measuring the heat-
capacity temperature dependence in the magnetic field and the magnetization curves Masuda et 
al. [45] accomplished that for the cases of low doping concentrations ( 04.0≤x ), the critical 
field, which destroys the antiferromagnetic spin arrangement in favor of the paramagnetic one, 
does not exceed 3-4 T. Additionally, Lappas et al. [23] draw a similar conclusion for the case of 
high doping level ( 24=x ) based on the behavior of the static as well as the dynamic 



 
77

susceptibility. The changes in the susceptibility show that below the phase-transition 
temperature the antiferromagnetic character of spin correlations is significantly reduced in the 
presence of a relatively low external magnetic field while ferromagnetic correlations are 
enhanced. This phenomenon was attributed to the metamagnetism of the investigated material, 
which is characteristic for magnetic materials with a strong easy axis anisotropy [54]. In such 
systems the phase transition to the paramagnetic state can be characterized by simple reversal of 
the local spin directions. The strong anisotropy prevents the spins from rotating away from the 
easy axis, as is the usual case for the spin-flop systems with only small amount of magnetic 
anisotropy. In the case of the PbNi1.76Mg0.24V2O8 compound the critical magnetic field driving 
the system from the antiferromagnetic state to the paramagnetic state is only slightly above 1 T 
at zero temperature and decreases towards zero when approaching the transition temperature 
from below.  
 Next, we consider the transferred hyperfine interaction. If we assume that the isotropic 
hyperfine coupling constants of each vanadium nucleus with the six nearest Ni2+ paramagnetic 
moments have the same value, this interaction would effectively cancel out in the 
antiferromagnetically ordered state, since the vanadium ion is coupled to four spins on one 
chain and two spins on the neighboring chain. Moreover, the variation of the Ni-V distances and 
Ni-O-V angles is not appreciable [16] indicating that all the six isotropic hyperfine coupling 
constants should be more or less identical. However, as discussed in the previous paragraph, the 
ferromagnetic spin correlations should be characteristic for the PbNi1.76Mg0.24V2O8 system in the 
experimental magnetic field of 6.34 T when lowering the temperature. Such correlations 
dominantly enhanced in the direction of the easy axis, produce large frequency shifts of 
maximal MHz 21=isoδν  (see subsection 3.2.2) when the easy axis lies parallel to the external 
magnetic field. In the general case of the magnetic easy axis making an angle θ with the 
direction of the magnetic field the expected NMR line would lie at the frequency 

θδννν cos0
iso+= . In the case of the uniformly distributed powder sample the corresponding 

lineshape is box-shaped since the probability of the external magnetic field making the angle θ 
with respect to the direction of the dipolar field is proportional to cosθ. The profile will remain 
symmetric even if the distribution of the polar angles θ is not uniform. If we now take into 
account also the impurities, this additional variable breaks the homogeneity of the Ni2+ spin 
chains. However, due to the powder nature of the sample, the corresponding NMR absorption 
line should stay symmetric.  
 On the other hand, also the anisotropic part of the transferred hyperfine coupling should 
be appreciable. Although the “contact” of the p electrons with the vanadium nucleus is some 15-
times weaker than the s-electron one as calculated in subsection 3.2.2, the former orbitals extend 
much further away from the nucleus. Consequently, one would expect them to considerably mix 
with the oxygen-bridge orbitals causing also a sizable p-orbital covalency effect. As the 
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anisotropic interaction originating from p electrons exhibits a typical ( )1cos3 2 −iθ -type of 
anisotropy with θι denoting the angle between the axis of the p orbital and the i-th principal axis 
of the hyperfine tensor [55], the experimental uniaxial-type anisotropic absorption spectrum is 
expected. The center of the theoretical spectrum originating from the p-electron covalency 
effect is, however, not shifted, which is why we attribute the temperature shift of the first 
moment of the experimental spectra at lower temperatures to the isotropic part of the hyperfine 
coupling tensor. The scaling of this shift together with the scaling of the linewidth with the level 
of doping thus seem to correspond to increasing ferromagnetic correlations in the direction of 
the easy axis at low temperatures. 
 Unfortunately, the above consideration can not go beyond mere speculations since we are 
dealing with a rather complicated system in the sense of the magnetism, which is additionally 
inhomogeneous and even more tragically no single crystal are obtainable. It may well be that 
the electron correlations characteristic for the metamagnetic phase are much more complicated 
and possibly influenced by some other electron-electron anisotropic interactions like the 
Dzyaloshinsky-Moriya interaction in addition to the crystal-field anisotropy. 
 

Phase Transition in Co-Doped Compounds 

 
Contrary to the magnesium case the NMR spectra of the Co-doped compounds show much 
more moderate behavior when approaching the phase transition. The spectra are significantly 
less broadened (see Fig. 3.15) and remain symmetric even in the close vicinity of the phase-
transition temperature. In addition, due to the fact that PbNi1.92Co0.08V2O8 shows a transition to 
the magnetically ordered state already at K 17.7=NT , we were able to inspect also the 
transition point. An interesting feature of the 51V NMR absorption lines below the transition 
temperature is that they split into a doublet, which is symmetrically positioned around the 
frequency of 71 MHz as shown in Fig. 3.16a. The peak-to-peak linewidth acts as an order 
parameter as evident from Fig. 3.16b. However, the relatively broad absorption peaks prevent us 
to accurately determine this splitting in the close vicinity of the phase transition point making 
the analysis of the corresponding critical exponent practically impossible. Thus it looks like the 
vanadium nuclei are sensing the two sublattice magnetizations consistent with the 
antiferromagnetic nature of the ground state. 
 In the light of the experimental facts given above for the Mg-doped samples the 
antiferromagnetic order at 6.34 T would look unrealistic. However, the magnetizations versus 
magnetic field measurement on the PbNi1.92Co0.08V2O8 sample significantly differ from the Mg-
doped cases. It seems that in Co-doped materials the magnetic order is more sustainable than in 
Mg-doped compounds. Namely, there is no hump in the magnetization curve of 
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PbNi1.92Co0.08V2O8 characteristic of the braking of the antiferromagnetic order up to the value of 
the magnetic field that we use, contrary to the magnesium family [45]. For this reason the 
antiferromagnetic order of spins should be considered when calculating the lineshape near or 
below the phase transition. 
 The expected NMR frequency shift for the vanadium nuclei at site i in the magnetically 
ordered state is in principle determined by the transferred hyperfine coupling and the dipolar 
coupling of the 51V nuclei with the six surrounding Ni2+ ordered magnetic moments, 

 ( ) θνθν ′∆++=∆ ∑∑ cos.~1cos~1
,,

d

j
zj

an

ji
j

j
iso

jii h
SA

h
SA . (3.26) 

The first term corresponds to the isotropic hyperfine shift where θ is the angle between the 
external magnetic field (z direction) and the direction of spin orientation. The anisotropic 
transferred hyperfine tensor in the second term is written in the laboratory frame with z as the 
direction of the external magnetic field and the last term indicates the frequency shift due to 
dipolar field pointing at angle θ ′  with respect to the external magnetic field. If the spin chain 
were again considered as uniform the isotropic hyperfine interaction would vanish as discussed 
above. In clear contrast to the case of the Mg-doped samples, this is consistent with the first 

Fig. 3.16: (a) Low-temperature 51V NMR absorption spectra of PbNi1.92Co0.08V2O8 near
the phase-transition temperature of 7.17 K. (b) The evolution of the peak-to-peak NMR
linewidth representing an order parameter. 
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moment of the resonant spectra in Co-doped samples exhibiting the activation dependence 
similar to the parent material. Unfortunately, we cannot make the same statement about the 
anisotropic part, since the pathways of the six V-Ni bonds are rather complicated. To draw a 
firm conclusion one would have to know the exact form of the anisotropic hyperfine tensor. 
However, as the experimental spectra do not show any significant anisotropy above the phase-
transition temperature, also this contribution must cancel out. The next possible interaction is 
the dipolar magnetic coupling. While the true antiferromagnetic ground state is a complicated 
(not classically imaginative) spin arrangement, our basic approximation will be the classical 
Néel state with the coupled spins pointing in the opposite direction and aligned parallel to the 
crystal c axis. Such a state with the spins on neighboring chains with the same c axis fractional 
cell coordinate coupled antiferromagnetically, gives the best explanation for the purely 
magnetic neutron diffraction pattern observed in the ordered phase in both the Mg- and Co-
doped materials [23, 31] and is consistent with the interchain exchange being ferromagnetic. 
This is because the interchain interaction was assumed to couple the two nearest neighbors in 
adjacent chains, which are in fact displaced by c/4 along the c-direction [3]. The anisotropy field 
due to the dipolar interaction can again be calculated from the known crystal structure.  
 With the above-proposed spin arrangement the dipolar field sensed by the vanadium 
nuclei has appreciably larger values than for the paramagnetic spin arrangement. For the 
nucleus at position ( )caar 2984.0 ,2641.0 ,5819.0=  it is given by 

 ( )[ ]mT1.6 ,6.5- ,41-~1 µ
γ

=⋅−= ∑
j

j
AFM
ij

d
i SAB

h
. (3.27) 

The maximum frequency shift, corresponding to the external magnetic field applied parallel to 
the internal dipolar field is thus of the order of kHz 470≈∆ dν , where the estimated average 
value of Bµµ ≈  corresponding to the antiferromagnetically ordered state was used [31]. Such 
an experimentally deduced reduction of the average Ni2+ magnetic moment with respect to the 
spin only value Bµ8.2  has been argued by Lappas et al. [23] to possibly arise from at least two 
different origins, the first one being low-dimensional “zero point” fluctuations and the second 
one the nickel-oxygen covalency effect. This observation is in accord with the remarks 
presented in subsection 3.2.1, where the magnetic anisotropy including the crystal field and the 
Dzyaloshinsky-Moriya interaction was argued to lead to canting of spins from the direction of 
the spin chains. The above expression for the local field at a particular 51V nucleus due to 
dipolar interaction with antiferromagnetically ordered paramagnetic Ni2+ ions has been 
calculated by taking into account “all” the neighbors of the chosen 51V nucleus within the 
several prime cells away. However, this time the appearance of the dipolar field does not 
critically depend on the number of considered neighbors as it does in the paramagnetic phase 
(see the explanation below Eq. (3.13)). It has to be noted that the dipolar field vector (Eq. 3.27) 
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is directly applicable only for the 51V site, for which it was calculated. But since all the sites are 
crystallographically equivalent, changing position to different vanadium sites, in effect, only 
exchanges the components of this vector and possible their sign. If has been also numerically 
verified that this is indeed the case and, moreover, the c component is within the sign equal for 
all vanadium nuclei within the prime cell as can also be expected in the first place. That is to 
say, a general V5+ position within the prime cell can be generated with the use of four-fold 
screw-axis symmetry operator lying along the crystal c-direction.  
 If the isotropic distribution of the angle values is assumed corresponding to the powder 
nature of the sample, the predicted lineshape will be of box shape. Due to homogeneous 
linewidth broadening it would be, however a bit rounded with the distance between the two 
shoulders roughly given by MHz 95.02 =∆=∆ d

i νν . This value satisfactory corresponds to 
the peak-to-peak linewidth observed in the ordered state of the PbNi1.92Co0.08V2O8 system (Fig. 
3.16b), which is though a bit smaller due to strong homogeneous line broadening.  
 However, the apparent discrepancy of the observed spectrum and the one predicted from 
the above-presented model is the presence of an unexpected central dip in the experimental line. 
The inhomogeneity of the system due to spin vacancies cannot account for this feature due to 
the fact that the powder spectrum corresponding to a distribution of the dipolar fields rather 
looks like a bell-like profile. Such a double-peaked spectrum could, however, correspond to 
canting of Ni2+ spins away from the crystal c direction. It is most likely, that the average spins 
have also a nonzero component within the ab crystal plane, due to local crystal field symmetry 
and the Dzyaloshinsky-Moriya interaction favoring perpendicular arrangement of interacting 
spins. In addition, this would explain the reduction of the average nickel momentum in the 
ordered state from 2.8µB to approximately µB as observed by neutron scattering [23, 31]. 
 As in the case of Mg-doping there are too many noncontrollable variables in the system 
to draw a definite conclusion about which of the possible interactions is the most influential at 
low temperatures. However, there is unambiguously a drastic difference between the 
development of the spin correlations in the vacancy-doped and spin-doped PbNi2V2O8 system. 
This point can be further examined by comparison of the spin-lattice relaxation in these 
compounds. 
 

Spin-Lattice Relaxation 

 
To get further insight into the development of the low-temperature spin correlations we 
measured also the 51V spin-lattice relaxation time using the saturation-recovery method in the 
parent as well as in doped compounds. As expected the room-temperature value of this 
parameter ms 7.11 =RTT  proved to be sample independent, while it showed a rather diverse 
behavior in different samples when decreasing the temperature. In the parent material the spin-
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lattice relaxation shows strong temperature dependence. The relaxation time monotonously 
increases and changes its size by roughly three orders of magnitude at 4.2 K with respect to the 
room-temperature value. When plotting ( ) 1

1
−TT  as a function of the temperature this parameter 

shows very similar evolution as the magnetic susceptibility of the sample (see Fig. 3.17) 
proving that paramagnetic electrons are involved in the dominant spin-lattice relaxation 
mechanism of the vanadium nuclei. 
 As discussed in the previous section, the transferred hyperfine coupling of the 51V nuclei 
at site i with the Ni2+ magnetic moments at sites j is the dominant mechanism producing time-
dependent local magnetic fields. The expression for the spin-lattice relaxation time in the limit 
of infinite temperature can then be derived by the use of Eq. (2.42) and the assumption of the 
Gaussian time distribution of spin-correlation functions [26] 

 ( ){ } ( ) ( ) 2
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to have the following form 

Fig. 3.17: The activation dependence of the PbNi2V2O8 low-temperature spin-lattice
relaxation rate with the solid line corresponding to the model given by Eq. (3.30). (b) The
temperature dependence of the spin-lattice relaxation rate divided by temperature in the
compounds PbNi1.88Mg0.12V2O8 ( ), PbNi1.76Mg0.24V2O8 ( ), PbNi1.98Co0.02V2O8 ( ) and
PbNi1.92Mg0.08V2O8 ( ) compared with the parent compound ( ). 
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Here 6=Z  denotes the number of the nearest Ni2+ neighbors of each vanadium nucleus, z is the 
direction of the external magnetic field and the exchange frequency is given by 

( ) 22 312 h+′= SSZJeω  [26]. The spin-lattice relaxation time corresponding to the above 
estimated isotropic part of the transferred hyperfine tensor mK 17.0~

ji, ⋅= B
iso kA  is then of the 

order of ms 2501 =isoT , which is two orders of magnitude above the measured value at room 
temperature. On the other hand, as mentioned above the relaxation rate in the pristine sample 
shows characteristic features of vanadium nuclei relaxing primary due to the coupling with the 
paramagnetic electrons. For this reason, it is natural to assume that the anisotropic part of the 
transferred hyperfine tensor dominates over the isotropic part. Thus the former components 
should be approximately an order of magnitude larger than the latter one to account for the 
experimentally observed relaxation rates. This experimental observation is also in accord with 
the development of the 51V NMR powder-like lineshape in Mg-doped samples at low 
temperatures, where the asymmetric absorption lines was proposed to be dictated by this same 
electron-nucleus interaction. 
 Next, let us turn to the temperature evolution of the spin-lattice relaxation time. The 
changes of this parameter with temperature can be traced back to the changes of the electron 
correlation functions ( ){ }νµ δδ kj StS . Changing from the physical to the reciprocal space the 
time-integral of these correlation functions can be shown to be proportional to the dissipative 
part of the dynamic wave-vector-dependent susceptibility ( )0,ωχ q′′ , which in turn, determines 
the temperature evolution of the spin-lattice relaxation time as well as the line shape [56].  
 In the pure Haldane system the spin-lattice relaxation rate is then expected to show 
activation behavior due to the singlet nature of the ground state with the dominant contributions 
originating from the center of the Brillouin zone, 0≈q , and from the wave vectors at the zone 
boundary π≈q  corresponding to the antiferromagnetic spin correlations [57, 58]. The 
phenomenological fit of the spin-lattice relaxation rate for temperatures below the spin gap 
value to the equation of the form  

 Tk∆ Bav

TTT
−

∞+= e111

1
0

11

 (3.30) 

yields an “average” spin gap value ( )K 151⋅= Bav k∆  and the relaxation rate at zero temperature 
( ) ( ) -110

1 s 17.2=−T  (Fig. 3.17a). The latter parameter corresponds to the relaxation caused by 
some other relaxation mechanism, which becomes important only at extremely low 
temperatures. On the other hand, the model parameter ( ) 1

1
−∞T  is not relevant, since at high 

temperatures interactions between excited magnon modes brake down the validity of this simple 
picture and therefore the Eq. (3.30) cannot be applied. 
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 Haldane et al. showed that at very low temperatures ( ( )cB BB −µ à TkB , where 
T 1914 −=cB  [1] is the critical field where the lowest-lying magnetic excitation crosses the 

energy level of the ground state) the ferromagnetic contribution dominates, while in the 
opposite limit ( ( )cB BB −µ á TkB ) the antiferromagnetic one gives the leading contribution 
[57]. As the energy gap in the center of the Brillouin zone ( 0≈q ) is by a factor of two larger 
than the spin-gap corresponds to the magnetic excitations at the center of the antiferromagnetic 
zone ( π≈q ), the experimentally deduced energy gap seems to have a reasonable value. 
Namely, the difference of the critical field in PbNi2V2O8 and the static magnetic field used in 
our experiments corresponds to the temperature of 7 K, which means that we are in between the 
two limiting regimes. A further complication is that the presence of the magnetic anisotropy 
terms splits the lowest magnon dispersion into three branches. Interbranch as well as 
intrabranch magnon transitions are then possible, which further complicates the theoretical 
calculation of the spin-lattice relaxation [57]. Furthermore, it has been theoretically as well as 
experimentally deduced that the Haldane gap increases as a function of the temperature, which 
makes the analysis even more complex [59]. A comparison of the measured dynamical spin 
gaps obtained from the nuclear spin-lattice relaxation with the static gaps corresponding to the 
static spin susceptibility in different Haldane system showed that the former gaps always have 
somewhat but not appreciably larger values than the latter ones [60], which is in line with our 
experimental findings. 
 In the presence of spin impurities the treatment of the system is of course even more 
involved. The contribution to the relaxation rate from the 21=S  degrees of freedom liberated 
by spin vacancies was also argued to have an activation-like character [57]. However, our 
measurement presented in Fig. 3.17b reveal a drastically different behavior for both Mg-doped 
and Co-doped samples. Since the calculation of the temperature dependence of the spin-lattice 
relaxation is far from being trivial in inhomogeneous systems only a qualitative description is 
given below.  
 The spin-lattice relaxation starts to deviate from the case of the pristine sample already 
below approximately 120 K in Mg-doped samples and at significantly lower temperatures in the 
Co-doped samples, which seems to correspond nicely with to temperature development of the 
linewidths of the corresponding 51V NMR spectra (Fig. 3.15). The behavior of the Co-doped 
samples is more or less expected. In the systems, which undergo magnetic phase transition to 
the antiferromagnetically ordered state, critical antiferromagnetic fluctuations are expected to 
determine the relaxation rate in the close vicinity of the phase-transition point [53]. As already 
explained at several occasions, the precursor effects of antiferromagnetically ordered clusters of 
spins above the transition temperature have a twofold effect on the system of 51V nuclei. First, 
the spatial aspect is expressed in the divergent character of the wave-vector-dependent 
susceptibility corresponding to the wave vector of AFM ordered spins, and second, the time 
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correlations become long-lived due to the slowing-down of spin fluctuation. Consequently, the 
spin-lattice relaxation rate should exhibit critical behavior of the form ( ) ( )( ) p

NN TTTT −− −∝1
1  

in the vicinity of the phase transition with the critical exponent p reflecting the dimensionality 
as well as static and dynamic aspects of AFM spin fluctuations [61]. However, such critical 
behavior is usually observed only in a close vicinity of the phase-transition temperature, 
( )( ) 1.0≤− NN TTT .  

 Our measurements of the spin-lattice relaxation in Co-doped samples show all the 
characteristics of critical behavior. There is a peak in the relaxation time accruing at 7 K in the 
case of PbNi1.92Co0.08V2O8, which nicely corresponds to the transition temperature of 7.17 K and 
the observed splitting of the absorption line. The peak in the relaxation rate proves that 
magnetic ordering still takes place despite the relatively large value of the static magnetic field. 
This gives a firm conformation of our assumption that metamagnetism is not present in this 
system in magnetic field up to 6.34 T, which is the origin for understanding the difference of the 
low-temperature spectra between Mg-doped and Co-doped compounds. The transition 
temperature of the other Co-doped sample is, unfortunately, below our lowest attainable 
temperature. The critical exponent p could not be determined, due to the fact that the critical 
regime with a constant p-value is too narrow with respect to our experimental accuracy. 
 On the other hand, the Mg-doped samples show drastically different characteristics in 
terms of the spin-lattice relaxation. Namely, as mentioned above, the relaxation starts deviating 
from the parent sample already below 120 K and shows no evidence of the presence of gapped 
excitations. The increase of the parameter ( ) 1

1
−TT  is also much more moderate than in the case 

of spin-doped materials. The evolution of the spin correlations in the two families is thus again 
proven to be rather different. 
 
 
3.4 Gap-Like Behavior of Magnetic Properties in SrNi2V2O8 

 
As mentioned in the opening section of this paragraph, the present state of the experimental 
findings regarding the low-temperature magnetic properties of the SrNi2V2O8 system is rather 
contradictory. The nature of the ground state of this spin system is thus still ambiguous. There 
was a suggestion made by Zheludov et al. [3] that SrNi2V2O8 compound should be unlike the 
isomorphous system PbNi2V2O8 positioned on the magnetically ordered side of the Sakai-
Takahashi phase diagram. This conclusion was drawn according to the bulk magnetic 
measurements and inelastic neutron scattering results. Below K 7=NT  the system should 
undergo a transition to a weak-ferromagnetic-like magnetically ordered ground state. However, 
the authors also reported that they were unable to detect any magnetic Bragg reflections in the 
presumably ordered phase, which lead them to a conclusion that the ordered moment is very 
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small. They also left an open possibility of a finite energy gap because of strong diffuse and 
phonon scattering dominating the INS spectra at low energy transfers. 
 Since the magnetic ordering is accompanied by a significant change in the behavior of the 
time and the space dependence of the spin correlation functions, magnetic resonance 
measurements probing the local spin fluctuations should prove valuable for addressing the 
unresolved questions, which is why we performed X-band ESR as well as 51V NMR 
measurement on the SrNi2V2O8 compound. The comparison with the PbNi2V2O8 Haldane-gap 
system is summarized in Fig. 3.18.  
 Let us first make a closer inspection on the ESR results. The spectrum measured at room 
temperature is again exchange-narrowed as in the Pb-based compound. However, it appears to 
be observably narrower, i.e., by approximately 15%. When lowering the temperature the spectra 
of the SrNi2V2O8 compound become more and mode similar to the case of PbNi2V2O8. This 
observation is valid not only for the linewidth behavior but also for the g-factor shift. The Ni2+ 
signal becomes practically unobservable below 40 K in the field-window that we use. For 
temperatures much bellow this temperature only an irregular ESR signal intrinsic to the 
resonator that we use is observed together with some narrow features with the Curie-like 
dependence around the free-electron g-value, which seem to correspond to impurities. However, 
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there is no drastic change observable around the temperature of 7 K. We were also not able to 
detect any antiferromagnetic resonance in X-band as well as in high-frequency ESR 
measurements. From ESR measurements one would then conclude that the nature of spin 
correlations of both vanadates is very similar at low temperatures. However, as the signal 
intrinsic to the investigated systems is absent, it is not wise to draw a definite conclusion about 
the ground state of the SrNi2V2O8 system at this point based only on the nonexistence of the 
ESR signal. In this respect additional NMR measurement prove to be irreplaceable. Before 
changing the theme, the difference of the high-temperature ESR parameters should be revisited. 
Namely, in addition to the difference of the room-temperature linewidth of the two materials, 
also the slopes of the increase of this parameter as well as the g-factor seem to be different for 
the two materials. A remarkable feature is that the linear fit of the high-temperature linewidth 
data gives very similar “zero-temperature” constant values, i.e., ( ) mT )2(227.00 =Pb

linBδ  and 
( ) mT )2(222.00 =Sr

linBδ , which again suggests on a common origin of the ESR signal. The 
different values of the slopes would then probably correspond to somewhat different behavior of 
the short-range correlations effect. Similar conclusion could also be drawn from the comparison 
of the magnetic susceptibility, which shows a reduction in the SrNi2V2O8 system with respect to 
the PbNi2V2O8 system, although the general temperature behavior is very similar. Thus the 
room-temperature susceptibility value is reduced from emu/mol 106.5 3−⋅=Pb

molχ  corresponding 
to Pb-based compound to emu/mol 100.4 3−⋅=Sr

molχ  in SrNi2V2O8 system. 
 Next, let us take a closer look at the 51V NMR results. In Figs. 3.18b and 3.18c only the 
temperature evolution of the spin-lattice relaxation and the center of the absorption lines are 
presented. The spectra and their width are not shown since they are very similar for both types 
of vanadates in the whole temperature range. Also the overall temperature dependence of the 
two NMR parameters presented in Fig. 3.18 is quite alike. The discrepancy in the high-
temperature region can be attributed to the difference of the magnetic susceptibilities in the two 
compounds as mentioned in the preceding paragraph since both the spin-lattice relaxation and 
the center of the resonance probe spin correlations due to the dominant magnetic interaction 
sensed by vanadium nuclei originating from the paramagnetic-electrons spin system. 
 More interesting should be the comparison of the NMR results in the low-temperature 
region. Namely, both the center position as well at the spin-lattice relaxation rates become very 
similar in both of the systems. This unambiguously proves that the static as well as the dynamic 
behavior of the local magnetic fields, or equivalently spin correlations, are practically the same 
in Sr-based and Pb-bases systems. The magnetic ordering, reportedly occurring in the 
SrNi2V2O8 system below 7 K [3] can thus safely be ruled out, at least in out compound, which is 
quite pure according to the performed structural analysis. If the spins ordered in three 
dimensions the spin-lattice relaxation would certainly show the typical deviations at least in the 
vicinity of the transition point as shown for the doped PbNi2V2O8 materials (see Fig. 3.17). 
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3.5 Discussion on Magnetic Resonance Results 

 
In this chapter a comprehensive study of magnetic resonance employed on the quasi-one-
dimensional PbNi2-x(Mg,Co)xV2O8 system has been given. The presented survey includes ESR 
as well as NMR measurements, both techniques yielding information on the development of the 
electron spin correlations as a function of the temperature and doping. Regarding NMR, 51V 
nuclei have been chosen since they provide only weakly interacting local probes for the 
electronic system. Since both techniques are sensitive to the static and the dynamic part of the 
electronic correlations on a local scale, they are able to offer additional information on magnetic 
anisotropy governing the electronic correlations to that information already established from the 
bulk magnetic measurements. 
 With the use of the ESR measurements performed on the parent PbNi2V2O8 compound 
we were able to show that the previously proposed model of the dominant part of the magnetic 
anisotropy interaction sensed by each Ni2+ magnetic moment, which is of the uniaxial 
symmetry, is if fact inadequate. Namely, the easy-axis-type of the single-ions anisotropy 
interaction neglects the local (non)symmetry thus throwing a shadow of a doubt on the accuracy 
of the determined magnetic parameters characteristic for this Haldane spin system. In addition, 
it has been argued that also other sources of magnetic anisotropy should be important due to the 
distortion of NiO6 octahedra. In this respect the Dzyaloshinsky-Moriya interaction between 
nearest-neighbor Ni2+ spins has been evaluated and shown to be possibly of the same order of 
magnitude as the presumably dominant single-ion anisotropy. 
 The disappearance of the ESR signal from the experimental X-band window at 
temperatures around the spin gap temperature of approximately 43 K has been argued to be due 
to the change of the character of the spin excitations when entering the Haldane phase. On the 
other hand, no drastic changes are observed in 51V NMR spectra recorded on the pristine 
compound in the whole temperature region between room temperature and 4.2 K. One could at 
first sight correlate these findings with an assumption that the vanadium nuclei are not coupled 
to the spin system of the paramagnetic moments. However, there are several experimental facts 
proving that the 51V nuclear system does communicate with the system of Ni2+ spins. This 
communication designates the vanadium ions in the PbNi2V2O8 as being partially magnetic. 
Their magnetic character originates from the electron spin system and is due to the covalency 
effect. Thus we have been able to associate the temperature dependence of the first moment of 
the NMR spectra with the imbalance of the electron distribution on vanadium sites, which gives 
rise to an effective transferred hyperfine interaction at these sites. The s-character of this 
anisotropic interaction was evaluated to arise from the portion of approximately 2.5⋅10-3 of the 
unpaired 3s vanadium electrons. On the other hand, a single crystal would be needed to be able 
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to perform a similar estimation about the redistribution of the vanadium 3p electrons since these 
electrons do not induce lineshifts in the powder samples. 
 On the other hand, the isotropic part of the transferred hyperfine interaction as the 
dominant nuclear anisotropy cannot account for the width of the observed spectra as it is 
severely attenuated by the rapid electron fluctuations. To examine the width of the central NMR 
transition line we employed the anisotropic part of this interaction as well as the chemical-shift 
tensor anisotropy, which together with the quadrupole coupling determine the absorption 
profiles. 
 The importance of the transferred hyperfine interaction at vanadium sites can be related to 
the relatively strong interchain exchange coupling. The VO4 tetrahedra thus clearly act as 
connecting bridges for the Ni-Ni exchange between adjacent chains. The resulting quasi-one-
dimensional character of the PbNi2V2O8 system determines the position of the system on the 
Sakai-Takahashi phase diagram close to the borderline between the Haldane disordered ground 
state and magnetically ordered ground state.  
 In contrast, the isomorphous SrNi2V2O8 compound was previously reported to be 
positioned on the ordered side of this phase diagram as shown in Fig. 1.4. This system was 
reported to undergo a long-range magnetic ordering below 7 K according to the inelastic 
neutron scattering results [3]. Our ESR and even more the 51V NMR measurements 
unambiguously indicate that the real situation is in fact different. Namely, there is no qualitative 
difference between the evolution of the electronic correlations in the Pb-based and Sr-based 
system. The overall temperature dependence of the NMR lineshape and the position of the line 
as well as the spin-lattice relaxation time reveal the presence of the spin gap also in the 
SrNi2V2O8 compound down to the temperature of the liquid helium. 
 The crossover between the magnetically disordered and ordered ground state and the 
precursor effects of this transition have been, on the other hand, successfully studied in the 
vacancy-doped PbNi2-xMgxV2O8 and the spin-doped PbNi2-xCoxV2O8 compounds. The ESR 
experiments performed on the former family revealed that there are two diverse origins of the 
paramagnetic signal. The first dominating at high temperatures corresponds to the Haldane 
system as in the pristine compound. However, at temperatures below the characteristic 
temperature of the spin gap the end-chain contribution overshadows the first one. Due to rather 
broad resonance profiles at very low temperatures we drew a conclusion that the liberated 

21=S  degrees of freedom are in fact ferromagnetically coupled, which was later confirmed 
also with thermodynamic measurement [45]. 
 In the mid-temperature range the two kinds of spin excitations in vacancy-broken chains 
seem to coexist as evident from the ESR and the NMR experiments. Namely, there is a uniform 
transition of the linewidths and the position of the line from the Haldane-dictated character to 
the dependence due to three-dimensional spin correlations. This observation goes hand in hand 
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with other experimental findings. In cases of low Mg-doping concentrations, i.e. below 
04.0=x , several experimental techniques revealed that clusters of antiferromagnetic order of 

the end-chain spins coexists with Haldane-ordered clusters of the remaining Ni2+ spins. These 
conclusions have been drawn from the specific heat measurements, magnetic entropy and 
magnetization measurements [45], as well as from magnetic resonance measurements [33, 46] 
simultaneously observing paramagnetic and antiferromagnetic resonance. At larger doping 
concentrations (like we use in our experiments) no magnetic phase separation has been 
observed. However, our experiments show that the character of the spin excitations and its 
evolution is qualitatively the same also in samples with higher doping level. 
 Due to severe broadening of the ESR absorption lines in the case of Co-doping, the 
comparison of the effect of vacancy versus spin doping on the development of the electronic 
correlations on Haldane chains has been studied only by NMR. These measurements 
unexpectedly revealed that the nature of the spin correlations at temperatures close to the 
ordering temperature significantly differs in the two families of materials, at least in the 
relatively high static magnetic field of 6.34 T that was used in our experiments. That is to say, in 
Mg-doped samples the antiferromagnetic ordering is destroyed by the presence of the magnetic 
field in favor of the ferromagnetic correlations as evidenced from the first and the second 
moment of absorption spectra, which is in line with the metamagnetic transition. On the other 
hand, the antiferromagnetic-type of correlations is much more sustainable in the Co-doped 
samples as already reflected in higher values of the transition temperatures in the first place. 
Thus the coupling between the nonuniform pockets of staggered magnetization induced in the 
neighborhood of the impurity sites, which tend to order at low temperatures, seems to be much 
stronger in the case of Co dopant. This can be traced back to effectively stronger interaction 
between clusters of antiferromagnetically ordered spins originating from the spin character of 
the Co dopant, which is the root to stronger antiferromagnetic correlations in Co-doped samples 
with respect to the Mg-doped samples. On the other hand, our high-temperature measurements 
show that the average Ni-Ni interchain interaction is very similar in all the samples. Namely, the 
NMR lineshift reflecting the interchain polarization effect does not change with the doping. 
 The survival of the antiferromagnetic spin correlations in the PbNi1.92Co0.08V2O8 system 
was experimentally expressed in various NMR parameters. The most convincing are the sharp 
peak of the spin-lattice relaxation curve at 7 K and the double-peaked character of the NMR 
absorption profile below this temperature indicating the presence of two sublattice 
magnetizations. 
 Another strikingly different aspect between the Mg- and Co-doping is the dependence of 
the ESR linewidth on the nature of the dopant and the level of doping. While in the case of the 
vacancy doping the moderate increase of the linewidth at high temperatures can probably be 
assigned to partially limited diffusion of non-Boltzman spin polarization due to spin vacancies, 
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the Co impurities act as effective sinks for the magnetic energy from the host spin system. This 
is a consequence of Co2+ ions being strongly coupled to lattice vibrations. The interpretation of 
the ESR data of PbNi1.98Co0.02V2O8 compound allowed us to evaluate the Ni-Co exchange 
interaction to be of the order of K 10⋅Bk  as well as provided an insight into the phonon system. 
The model predicted a reasonable value of the Debye temperature ( K 500≈Dθ ) and a rather 
convincing bottleneck behavior of the temperature dependence of the impurity broadening 
mechanism. 
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4 MAGNETISM OF 2D ORTHOGONAL DIMER SYSTEM 
SrCu2(BO3)2 

 
4.1 Structural Properties and Related Magnetic Character 

 
Although the initial synthesis of the SrCu2(BO3)2 compound was reported in 1991 [1], it did not 
arouse any major interest of the scientific society until the break of the millennium when this 
particular system was rediscovered by Kageyama et al. [2]. The intense response of the 
theoreticians as well as experimentalists that followed the latter contribution, and is still in 
progress, can be attributed to the relatively uncomplicated basic model Hamiltonian, which can 
account for the fundamental magnetic properties. The second factor, crucial for the scientific 
triumph of this system, is the successful manufacture of high-purity single crystals of 
SrCu2(BO3)2 by traveling solvent floating zone method [3], which enormously simplifies the 
study of the anisotropy of its magnetic character. 
 The unit cell of the SrCu2(BO3)2 compound has tetragonal symmetry ( mI 24 ) [1] with 
cell constants Å 982.8=a  and Å 664.6=c  at room temperature [4]. As shown in Fig. 4.1, the 
crystal structure consists of consecutive CuBO3 layers displaced by Sr2+ ions. All the Cu2+ sites 
possessing spin 21=S  are crystallographically equivalent. Pairs of nearest copper neighbors 
within rectangular CuO4 groups are interconnected by planar BO3 groups. In this way a novel 
two-dimensional network of copper dimers is formed with the neighboring pairs oriented 
perpendicular to each other. Due to the layered structure also the magnetic character of this 
system is two-dimensional. Namely, the dominant magnetic exchange interaction pathways are 
the antiferromagnetic intradimer exchange J and the antiferromagnetic exchange interaction of 
each copper magnetic moment with the four next-nearest neighbors J’, which are taken into 
account by the so-called two-dimensional orthogonal dimer model [5]. The system is 
topologically equivalent to the Shastry-Sutherland model [6], artificially constructed almost 
twenty years before this first experimental realization of the model was recognized (see Fig. 
1.3). The model Hamiltonian 
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with the first sum representing the exchange between pairs of nearest neighbors and the second 
one pairs of next-nearest neighbors, has an exactly soluble eigenstate. This state, which is also 
the ground state of the model up to the critical ratio of the exchange constants ( ) 68.0=′ cJJ  
[7], is a simple product state of singlets on each dimer, called the dimer singlet state. Above this 
critical ratio an intermediate state of either helical order [8] or more probably plaquette singlet 
nature [7, 9] is believed to exist for the Shastry-Sutherland model. However, for the next-nearest 



 
96

exchange greater than the intradimer one the Shastry-Sutherland spin system resembles the two-
dimensional square-lattice Heisenberg model, which exhibits an antiferromagnetically ordered 
ground state providing a finite coupling between planes. It is believed that the crossover from 
the nonmagnetic ground state to the magnetically ordered state occurs around ( ) 7.0≈′ cJJ  
[10]. A direct evidence of the dimer singlet ground state was given by 63Cu NMR experiments 
[11]. The four-fold splitting of the central absorption line and the coherent spin-echo 
oscillations were attributed to nuclear spins strongly coupled within pairs and, on the other 
hand, orders of magnitude weaker coupling between different dimers. As the nuclear coupling is 
mediated by the electronic system, these observation serves as an unequivocal indicator of the 
dominancy of spin correlations within the dimer in the ground state of the system. 
 For the SrCu2(BO3)2 system various sets of exchange parameters have been proposed in 
the literature [5, 12, 13], among which the values K 85⋅= BkJ  and JJ 63.0=′ reproduce the 
temperature dependence of the magnetic susceptibility most accurately [13]. Thus the ground is 
of spin-liquid type, although the system is positioned in the close vicinity of the quantum-phase-
transition borderline. The dimer singlet state remains the ground state even if the finite 
interlayer coupling JJ 09.0|| =  is considered [14]. 
 Within the orthogonal dimer model the lowest-lying magnetically excited state is a single 
triplet excitation present on one of the dimers with the spin gap significantly suppressed, which 
is due to the presence of the geometrical frustration of the next-nearest neighbor exchange [5]. 
Experimentally, the first direct observation of the spin gap K 35⋅= Bk∆  was provided by high-
field ESR experiments [15] and latter confirmed by various experimental techniques including 
inelastic neutron scattering experiments [16], far-infrared spectroscopy [17] and Raman light 
scattering [18]. An interesting feature of the single triplet excitation is its localized nature, 
which is reflected in almost flat dispersion of the lowest-lying excitation [16]. The single triplet 

Fig. 4.1: (a) Crystal structure of the SrCu2(BO3)2 compound as viewed along the crystal c
axis and (b) the structure of a CuBO3 layer. The rectangles represent the unit cell. 

(a) (b)

η

Sr
Cu
B
O



 
97

can hop to another dimer only from the sixth order of perturbation in JJ ′  [19] while correlated 
hopping or two-particle coherent motion is much more effective [20]. The direct consequence of 
the localized character of triplet excitations is also the presence of magnetization plateaus 
observed in SrCu2(BO3)2 for the first time in two dimensions [2]. The gaped phases occur at 1/8, 
1/4 and 1/3 of the saturated magnetization [21] and the lowest one exhibits magnetic 
superstructure [22].  
 Although the isotropic Shastry-Sutherland Hamiltonian can explain many of the magnetic 
features of the SrCu2(BO3)2 system showing its quasi-two-dimensionality, it fails to account for 
some fine details. For instance, the single triple excitation exhibits a fine structure [15, 16], 
which calls for magnetic anisotropy to be included in the model Hamiltonian. In fact, in was 
shown by Cépas et al. that the observed splitting of the lowest-lying excitation can be explained 
by including Dzyaloshinsky-Moriya (DM) interaction between next-nearest neighbors [23], 
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with the corresponding Dzyaloshinsky-Moriya vector K 1.2|| ⋅=′ BkD  pointing parallel to the 
crystal c axis. Such a form of the DM interaction was obtained by symmetry arguments with the 
small buckling of the CuBO3 planes (see Fig. 4.1a) neglected. In fact, if these planes are treated 
as being completely flat there will be no DM coupling within nearest Cu2+ pairs due to the 
center of inversion positioned in the middle of each dimer.  
 However, there are numerous recent experimental findings suggesting also sizable 
intradimer DM interaction. Namely, the unusual 11B NMR shifts at low temperatures and the 
observed enhanced staggered magnetization [24, 25], the relative intensities of singlet-triplet 
transitions observed in recent high-field ESR measurements [26], as well as the temperature 
dependence of the specific heat at low temperatures and in high magnetic fields, i.e., above 27 T 
[27], can all be explained by inclusion of the nearest-neighbor DM coupling. Second, though the 
interdimer DM interaction ||D′  reproduces the observed fine splitting of the single triplet 
excitation and is of the expected amplitude, K 6|| ⋅≈′⋅∆≈′ BkJggD , it cannot explain the 
observation of the otherwise forbidden singlet-triplet transition in ESR [15] and far-infrared 
absorption measurements [17] in the first place. In the first approximation of the isotropic 
Hamiltonian (Eq. (4.1)) any spin operator applied to the singlet ground state vanishes. As the 
direct consequence magnetic transitions from this state to any excited state are not possible. 
Since the interdimer DM interaction mixes a finite amount of the excited states into the ground 
state, these transitions are in principal allowed in SrCu2(BO3)2 system. However, due to the 
symmetry of the system dictating the DM vector pattern, the above-mentioned DM terms still 
yield zero intensity of the magnetic dipole transitions between the ground state and the lowest-
lying excited states of the system for cB ||  [23, 28]. The explanation of the observed ESR 
transition for this reason still stimulates theoretical work. Quite recently the exact 
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diagonalization approach of the model Hamiltonian on relatively small spin system of 6 sites 
[29] and the application of the standard Lanczos method on somewhat larger spin clusters of 20 
sites [30] have been reported. The latter study provides a satisfactory explanation of many 
details of the observed single triplet splitting by inclusion of the intradimer DM anisotropy. 
Moreover, it shows that also a finite component of the symmetry-forbidden intradimer DM 
vectors ||D  is required to account for the experimental findings, implying that the system should 
undergo a structural phase transition at very low temperatures. 
 Alternatively, Cépas et al. have proposed that electric dipole transitions between the 
ground state and the excited states is responsible for the observation of these “forbidden” 
transitions [28, 31]. The authors successfully explained the occurrence of the infrared-active 
modes as well as the dependence of their relative intensities on the external magnetic field [17] 
by introducing a novel concept of dynamical DM interaction. In this picture phonons induce 
instantaneous DM terms, which are otherwise forbidden by the crystal symmetry.  
 Nevertheless, a strong experimental evidence for the dynamic DM coupling is still 
lacking, which is why we employed a comprehensive X-band ESR study on a single crystal of 
the SrCu2(BO3)2 system [32]. The temperature dependence and the angular dependence of the 
observed linewidth helped us to give the first quantitative estimation of the intradimer 
Dzyaloshinsky-Moriya coupling corresponding to high temperatures. The second aim of our 
ESR investigation was to try to determine the major anisotropy contributions in the case of the 
two-dimensional SrCu2(BO3)2 system. Although the anisotropic spin interactions are expected to 
be weak, they can have a strong impact on spin dynamics due to the highly frustrated nature of 
the system. We conducted ESR experiments on powder samples [33] as well as on a single 
crystal [32, 34] in order to be able to clarify this issue. The experimental results from the single 
crystal enabled us to determine the direction of the intradimer DM vectors in addition to the 
interdimer ones. The results of the two above-mentioned topics are presented in the section that 
follows. 
 Another issue concerning the SrCu2(BO3)2 system is the doping of this compound by 
whether electrons or holes. Due to its structural similarity with the high-Tc cuprates, already in 
the first report by Kageyama et al. [2] a possibility of superconductivity was suggested in the 
case of doped SrCu2(BO3)2. This idea was then theoretically explored within the repulsive 
Hubbard model [35, 36]. However, no experimental evidence of the superconductivity of the 
doped SrCu2(BO3)2 system has been reported up to date. On the other hand, the introduction of 
electrons or holes or the application of the chemical pressure on the system can have a 
pronounced effect also on the spin correlations developing in the system. Such disturbances can 
affect the spin gap and the overall low-lying magnetic excitations and possibly lead to novel 
magnetic phenomena. Our attempts of doping the powder SrCu2(BO3)2 samples [37] will be 
presented in section 4.3, followed by a section of concluding remarks.  
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4.2 Determination of Magnetic Anisotropy by ESR 

 
Electron spin resonance has been employed to determine the magnetic anisotropy contributions 
and the orientation of their principal axes since this technique probes the magnetic anisotropy 
on a local level and can thus serve as an additional source of information to those obtained from 
11B and 63Cu NMR study on a single crystal [11]. For instance, the 11B NMR lineshift with the 
boron ions acting as weakly interacting agents coupled to the electronic system implied on 
sizable anisotropy of the transferred hyperfine interaction just like our observation in the 
PbNi2V2O8 system. 
 The X-band spectra corresponding to a high-purity powder sample recorded in the 
temperature range between room temperature and 5 K are presented in Fig. 4.2a. As evident the 
recorded derivative ESR signals are again rather broad indicating that the magnetic anisotropy is 
significant. In several samples also a narrower component corresponding to the g-factor around 
the free electron value has been observed at higher temperatures [33]. Its intensity varied from 
sample to sample, which is why we can now attribute it to paramagnetic impurities or a small 
amount of a different phase. The intensity of this additional narrow component is, however, 
insignificant with respect to the broad signal since it does not exceed few percents in any of the 
samples making the x-ray observation of this impurity “phase” nondetectable.  
 The ESR intensity at room temperature is around molemu/Cu  108.0 3−⋅  as determined 
from a comparison with a standard reference [33], which is very close to the value of the static 
susceptibility molemu/Cu  100.1 3−⋅  [2]. Moreover, the ESR signal follows the behavior of the 
latter parameter (see Fig. 4.2b), which implies that the measured ESR signal originates form the 
system of Cu2+ dimers. The small discrepancies between the temperature behavior of the ESR 
intensity and the susceptibility can be as in the previous chapter assigned to the broadness of the 
ESR spectra. However, contrary to the PbNi2V2O8 compound the maxima of the two parameters 
in comparison are in clear accordance in the SrCu2(BO3)2 system. 
 

4.2.1 ESR Absorption Lineshape 

 
The agreement of the ESR absorption spectra with the “broad”-Lorentzian lineshape (see Eq. 
(3.1)) in powder sample is satisfactory for the whole temperature range between room 
temperature and 5 K as shown in Fig. 4.2a. There are some minor discrepancies, which can 
however be attributed to the powder nature of the sample and the presence of a small amount of 
impurities. Namely, in powders there is a distribution of the linewidths and g-factors 
corresponding to a certain orientation of the magnetic field within the crystal frame, both of 
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which will be presented in what follows. The total ESR signal thus naturally deviates from the 
Lorentzian profile even though the individual components might be Lorentzian themselves. 
 For this reason the lineshape analysis is much more informative in case when single 
crystals are available. For the SrCu2(BO3)2 system the accordance of the single-crystal spectra 
with the “broad”-Lorentzian distribution is excellent as illustrated in Fig. 4.3. The (a) part shows 
the experimental spectrum recorded at 525 K with the magnetic field oriented parallel to the c 
crystal axis. Although the recorded and the predicted lineshapes are practically identical, a more 
precise examination is possible by the standard test of the ESR lineshape [38]. In the plot 

( ) ( )( ) 21
02 BIBIBBY ppmax δ−−=  versus ( )( )2

02 ppBBBX δ−= , where Imax represents the 
maximum of the ESR derivative specter, the Lorentzian profile yields a linear dependence of the 
form 434 += XYL  while the dependence for the Gaussian line is exponential 

( ) eXYG 22exp= . Clearly, the character of the ESR line of the SrCu2(BO3)2 compound is 
purely Lorentzian for both the external magnetic field parallel ( °= 0θ ) and perpendicular 
( °= 90θ ) to crystal c direction defining the anisotropy direction. The plotted experimental data 
correspond to a rather high temperature of 525 K, which allows us to disprove the importance of 
the long-time diffusional decay of the spin correlation functions on the spin dynamics in the 
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Fig. 4.2: (a) X-band ESR spectra of the SrCu2(BO3)2 powder sample at selected
temperatures with the gray lines corresponding to fits to the “broad”-Lorentzian model
given by Eq. (3.1). (b) A comparison of the ESR intensity ( ) and the static magnetic
susceptibility ( ). 
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time window of X-Band ESR for all temperatures below this value [34]. As in the PbNi2V2O8 
system the spin diffusion (see subsection 2.1.4) is also not important in SrCu2(BO3)2 since the 
diffusional decay is basically thee-dimensional as ||J à 0Bg Bµ . Second, the Lorentzian 
lineshape indicates that exchange narrowing is active allowing us to take advantage of the 
theory presented in subsection 2.1.3. Such a character is understandable since the ratio 

ppB BgJ δµ  does not drop below 200 in the temperature interval of investigation indicating that 
the typical decay of the spin correlation function ( )τψ , regulated by the exchange interaction, is 
much faster than the decay of the ESR relaxation function ( )tϕ  determined by the magnetic 
anisotropy. 
 

4.2.2 g-Factor Anisotropy 

 
The g-factor anisotropy is a signature of the anisotropy of the local crystal structure around a 
certain localized magnetic moment defining the symmetry of the crystal field interaction as 
explained in chapter 2. In the case of the tetragonal local arrangement of the ligands (see Fig. 
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Fig. 4.3: A comparison of the experimentally detected X-band ESR spectrum of the
SrCu2(BO3)2 single crystal at 525 K with the Lorentzian ( ) and the Gaussian ( )
dependence for the external magnetic field parallel ( ) and perpendicular ( ) to the
crystal c axis. Part (a) shows the recorded spectrum as it appears, while part (b) illustrates
the standard lineshape analysis. 
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4.1b) the g-factor is expected to depend on the polar angle θ between the direction of the 
external magnetic field and the anisotropy direction (c axis) while it should not show any 
dependence with respect to the azimuthal angle φ within the ab plane. This assumption is well 
justified in the case of the two-dimensional SrCu2(BO3)2 system as presented in Fig. 4.4 
corresponding to the angular dependence of the line position recorded at room temperature. 
 The dependence of the g-factor upon the polar angle can be described by the following 
equation 

 θθ 2222
|| sincos ⊥+= ggg , (4.3)  

where the parameter ( )2269.2|| =g  represents the g-value along the c direction and 
( )2057.2=⊥g  the principal value for the perpendicular directions. The above expression can be 

derived in the same manner as presented below. The fairly small deviations of the g-factor from 
the free-electron value are a consequence of the relatively strong crystal field with respect to the 
spin-orbit coupling which then, in effect, partially restores the “quenched” orbital momentum as 
is characteristic for the iron-group ion Cu2+ (3d9). The ratio 400|| ≈−− ⊥ gggg  is typical for 
the tetragonal symmetry in the case of the orbital part of the ground-state wave function being 
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Fig. 4.4: The line-position anisotropy of the X-band ESR spectra recorded in the
SrCu2(BO3)2 single crystal at room temperature with the dependence on the polar angle θ 
between the direction of the external magnetic field and the crystal c direction ( ) and the
dependence with respect to the azimuthal angle φ ( ). The solid line corresponds to the
fit with the uniaxial-symmetry model given by Eq. (4.3). 
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of the form ( ) ( )rfyxyx 2222 −=−  with ( )rf  being the isotropic electron-nucleus-distance 
dependent function [39]. In the other case of ( ) ( )rfrzrz 2222 33 −=−  function representing 
the ground state, which is also possible, a small and negative g-shift for the parallel direction 
should be observed [39]. Thus we can conclude that the orbital wave function of the ground 
state in SrCu2(BO3)2 compound is the 22 yx −  function.  
 A more detailed look at the crystal structure shows that the local symmetry at Cu2+ sites is 
not perfectly tetragonal [4]. The arrangements of the oxygen ligands around the copper dimer 
and the corresponding angles at 100 K are shown in Fig. 4.5a. It should be emphasized that the 
angles do not change appreciably with the temperature. On the other hand, the buckling of the 
CuBO3 planes (see Fig. 4.1a) characterized by the angle α between the normal of the plane 
containing the four oxygen ions corresponding to a certain CuO4 plaquette, and the c crystal 
direction (see Fig. 4.5b) is a function of the temperature. The buckling angle at 100 K amounts 
to approximately 5.5° and decreases to 4° at room temperature. Moreover, it further decreases 
above this temperature and completely disappears at temperatures grater than K 395=sT , 
which corresponds to the structural phase transition from the low-temperature mI 24  crystal-
symmetry phase to the high-temperature mcmI /4  one [4]. 
 In what follows in this subsection, the effect of the buckling of the CuO4 planes on the g-
factor anisotropy is considered. Due to the crystal symmetry (a mirror plane perpendicular to the 
dimer direction positioned in the middle of it) one of the principal values of the g-factor is 
oriented along the η direction defined in Fig. 4.5. The other two principal directions are, 
however, shifted from the ξ and c crystal directions by the buckling angle α due to the finite 
corrugation of CuBO3 planes. Let us assume that the principal values of the g-factor 
corresponding to the two principal directions within the plane of the plaquette have the same 
value. Then the transformation of the g-tensor written in the principal frame as 
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to the form in the modified crystal frame, where both a and b crystal axes are replaced by ξ and 
η axes, is obtained by the uniform rotation by ±α around the η axis for the copper sites 1 and 2. 
The corresponding g-factor tensors have the following form 
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As the neighboring dimers are arranged perpendicular to each other, there are two more 
nonequivalent copper sites with the g-tensors 
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Let us focus on the determination of the values of the g-factor corresponding to the crystal 
directions for the Cu2+ ion at site 1. The first one being ⊥′= gg η

1  is trivial, however, for the case 
of the external magnetic field applied parallel to the ξ direction the following reasoning is in 
place. The Zeeman Hamiltonian of the form  

 ( )ξξξξµµ cc
BBZ gSgSBH 1100 +=⋅⋅= BgS , (4.7) 

with the corresponding g-factors written in the first column of the first tensor in Eq. (4.5), can 
be written in the basis of the two eigenstates 21±=ξS , where ξ is taken as the quantization 
axis. In such a case the spin operator ( ) iSSS c 2−+ −=  is a linear combination of the raising 

+S  and the lowering operator −S . In the introduced basis the Zeeman Hamiltonian reads 

 








−
−

= ξξξ

ξξξµ
11

110

2 gig
iggB

H c

c
B

Z , (4.8) 

a

b
c

ξ

82.0°73.1°

102.3° α

(a) (b)

1 2

η

ξ

Fig. 4.5: The appearance of the two neighboring CuO4 plaquettes in the (a) ab and (b) cξ
crystal plane. The latter figure shows the buckling of these plaquettes with respect to the c
crystal axis. 
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which sets the corresponding eigenvalues  

 ( ) ( ) ααµµ ξξξ 22
||

2202
1

2
1

0 sincos
22

ggBggBE BcB ′+′±=+±= ⊥ . (4.9) 

The effective g-factor is thus ααξ 22
||

22
1 sincos ggg ′+′= ⊥ . Similar expressions can be 

obtained also for the other three nonequivalent sites. If the principal g-values are estimated in 
the first approximation as the parameters obtained from the fit of the experimental data 
presented above, i.e., 269.2|| =′g  and 057.21 ==′⊥

ηgg , and we take into account room 
temperature value of the buckling angle, the difference of the two extreme values of the g-factor 
within the ab crystal plane is evaluated to be of the size .001.011 =− ηξ gg  In a similar manner 
the expression ||1 gg c ′≈  is realized.  
 As the corrections are rather small, the above approximation of the principal g-values 
with the experimental values is well justified. Furthermore, the buckling of the CuO4 plaquettes 
away from the c direction does not induce an appreciable azimuthal-angle dependence of the 
position of the center of the ESR absorption line, which is in accordance with the experimental 
observations presented in Fig. 4.4. The assumption of the tetragonal local symmetry thus also 
seems to be reasonable, although, it has to be emphasized that the measured ESR signal reflects 
the average contribution of all the four nonequivalent Cu2+ sites. 
 

4.2.3 ESR Linewidth  

 
The X-band ESR spectra have been recorded in a broad temperature interval between 575 K and 
5 K. However, the single crystal sample was found to contain some paramagnetic impurities 
unlike the powder sample. This fact disables a reliable determination of the linewidth below 
approximately 10 K due to the fact that narrow features positioned at the free-electron g-value 
with the Curie-like character of the ESR intensity dominate the low-temperature ESR spectra in 
the single crystal. The rather large linewidth of the powder sample at room temperature, which 
accounts to ( )mT 178=p

ppBδ , can be attributed to considerable magnetic anisotropy present in 
the system. Moreover, also the linewidth anisotropy is substantial. The width corresponding to 
the magnetic field parallel to the crystal anisotropy direction is ( )mT 191|| =ppBδ  while it is 

( )mT 169=⊥
ppBδ  for the magnetic filed within the ab crystal plane. As with the g-factor also the 

linewidth exhibits no dependence on the azimuthal angle. 
 The temperature dependence of the linewidth of the powder sample as well as the single 
crystal is shown in Fig. 4.6. This ESR parameter shows a moderate linear decrease with 
decreasing temperature in the high-temperature regime, exhibits a minimum around room 
temperature and a strong broadening below room temperature. A maximum is observed around 
10 K in the powder sample, while a reliable analysis is not possible in the single crystal below 
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this temperature to confirm and evaluate the position of the maxima. The high-temperature 
increase of the linewidth with rising temperature does not depend on the orientation of the 
external magnetic field. Thus the slopes for the parallel direction ( )mT/K 1035.0|| =k  and the 
perpendicular direction ( )mT/K 1033.0=⊥k  with respect to the crystal c axis have the same 
value within the experimental error. Such a behavior will be shown to be extrinsic to the pure 
spin system, i.e., it is due to the coupling of the spin system with lattice vibrations. A further 
analysis of the temperature dependence in different regimes will be presented latter on in this 
subsection but first let us focus on the observed angular dependence of the linewidth and 
evaluate the effect of the possible line-broadening mechanisms. 
 

Dzyaloshinsky-Moriya Interaction and Other Sources of Spin Anisotropy in SrCu2(BO3)2 

 
Before going to a detailed analysis of the linewidth anisotropy an estimation of the strength of 
all possible line-broadening mechanisms is in place [34]. As explained in chapter 2 the 
dominant anisotropy contributions to the spin Hamiltonian for a system of spins 21=S  are the 
magnetic dipolar interaction between the localized magnetic moments (Hdd), the hyperfine 
interaction of electronic and nuclear spins, the symmetric anisotropic exchange (Hae), and the 
antisymmetric Dzyaloshinsky-Moriya interaction (HDM). A superficial evaluation of the 
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Fig 4.6: The temperature behavior of the X-band ESR linewidth in the SrCu2(BO3)2

powder sample ( ) and single crystal with magnetic field parallel ( ) and perpendicular
( ) to the crystal c axis. 
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importance of each of the mentioned spin anisotropies can be made by the approximate 
expression of the linewidth of the exchange-narrowed ESR absorption line corresponding to 
infinite temperatures given by Eq. (2.17). The approximation of the spin correlation time by 

Jc h=τ  in the system with complicated exchange pattern seems rather careless, however, it 
proves to be sufficient for a mere order-of-magnitude prediction. 
 Knowing the crystal structure of the SrCu2(BO3)2 the evaluation of the local dipolar fields 
is straightforward. The contribution of the nearest neighbor, which is at distance Å 91.2=r , is 
of the order of mT 834 3

0 =rg B πµµ . The calculated second moment is similarly of the size 
( )2

2 mT 100⋅= B
dd gM µ , which yields according to Eq. (2.17) the linewidth of mT 2.0≈dd

ppBδ . 
Second, the hyperfine coupling constants for the 22 yx −  ground state of the Cu2+ ions in the 
tetragonal crystal field are given as [39] 
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where the parameter P  for free copper ions has the value G 3804 3
0 ⋅≈= BB grg µπµγµ hP . 

In crystals this parameter is typically lowered by 15-20% due to the covalency effect. The 
second parameter 3.0≈K  originates from the polarization of s electrons, which also induces 
the electron-nucleus magnetic coupling. From the experimentally determined g-shifts the 
principal values of the copper hyperfine coupling in SrCu2(BO3)2 can be evaluated to be of the 
size G 350|| ⋅≈ BgA µ  and G 20⋅≈⊥ BgA µ . The contribution of this anisotropic interaction to 
the ESR linewidth mT 03.0≈hf

ppBδ  is thus even smaller than the dipolar contribution. 
 The two anisotropic parts of the spin Hamiltonian already considered in the previous 
paragraph evidently cannot account for the experimentally observed linewidths, which is why 
anisotropic exchange coupling has to be employed. The symmetric part of this interaction 
originates from the second order perturbation in the spin-orbit coupling and is thus of the order 

( ) K 1~ 2 ⋅≈⋅∆+ BkJgged . According to Eq. (2.17) and Eq. (2.22) this pseudo-dipolar 
interaction then dictates ESR linewidths of mT 3≈ae

ppBδ  again more than an order of magnitude 
narrower than the observed spectra. The last candidate is the antisymmetric part of the 
anisotropic exchange. As the Dzyaloshinsky-Moriya interaction is the result of the first order 
perturbation calculation its size can be as large as JggD ⋅∆~ . In fact, as already explained 
the value of the interdimer DM coupling estimated from the fine splitting of the lowest-lying 
magnetic excitation is K 1.2|| ⋅=′ BkD  [23], which is of the same order as the predicted value 

K 6'~ ⋅=⋅∆ BkJggD . The contribution of this interaction is then mT 46≈ae
ppBδ . 

 The above analysis clearly shows that DM interaction is the only one giving linewidths of 
the correct order of magnitude. All the other contributions are at least an order of magnitude 
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smaller. It should be emphasized, though, that the presented estimations are strictly valid in the 
infinite-temperature regime where the static spin correlations effects are negligible. Second, the 
spin correlation time was evaluated from only the nearest-neighbor exchange, which is why the 
sole disagreement of the DM dictated linewidth and the experimental values by approximately 
the factor of 2 should not be treated as a failure. As it will be shown, a more accurate 
determination of the second and the fourth moment of the ESR absorption lines will help us to 
critically evaluate the current picture of only the next-nearest DM coupling with vectors 
pointing along the anisotropy axis, designated to be the dominant anisotropic interaction. 
 

ESR Linewidth Anisotropy Determined by Dzyaloshinsky-Moriya Interaction 

 
The angular dependence of the ESR linewidth resembles the behavior of the g-factor, as there is 
no anisotropy within the experimental error of mT1±  for external magnetic field within the ab 
crystal plane and a significant dependence on the polar angle. The anisotropies recorded at room 
temperature and at the temperature of 525 K are shown in Fig. 4.7. The dependence can be 
described by the equation of the form 

 ( )θδ 2cos1++= BABpp , (4.11) 

with parameters ( )mT 58.47=A , ( )mT 58.21=B  corresponding to 295 K and ( )mT 51.54=A , 
( )mT 50.22=B  at 525 K. The parameter B is virtually unchanged as a consequence of the 

already mentioned fact that the high-temperature linear increase is not angular dependent. The 
form of the linewidth anisotropy given by Eq. (4.11) is preferred over the self-offering 
expression θ2cosBABpp ′+′=∆  for the reasons becoming unveiled shortly. 
 Let us first explore the originally proposed picture of only out-of-plane interdimer 
Dzyaloshinsky-Moriya interaction as the only one surviving the approximation of the planar 
CuBO3 planes [23]. The way to the pattern of the DM vectors shown in Fig. 4.8 is paved with 
few fundamental symmetry arguments. A detailed analysis will be presented latter on in 
connection with a more general case of corrugated CuBO3 planes. For the moment let us make 
only a single comment on the absence of the nearest-neighbor DM coupling. The crucial feature 
is the presence of the center of inversion in the middle of each dimer bond. Since this is a 
symmetry operation of the crystal space group, the Hamiltonian is invariant to its application. 
On the other hand, the DM interaction has odd parity with respect to the inversion due to its 
antisymmetric nature. Consequently, the intradimer DM coupling is identically equal to zero.  
 In the case of the Dzyaloshinsky-Moriya interaction as the dominant spin anisotropy 
contribution the ESR linewidth (see Eq. (2.19)) is determined by the second moment, given by 
Eq. (2.22), and the fourth moment [40] 
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The three-site terms sum over functions ( ) ( )ααααα
jkijikjkikijijk DDJDDJF ++−= . The above 

expressions correspond to the DM vectors written in the laboratory frame with z as the direction 
of the external magnetic field. The expected ESR linewidth anisotropy is then obtained by the 
transformation of the DM vector from the laboratory to the crystal frame 
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The orientation of the external magnetic field with respect to the crystal frame is here denoted 
as usually by the polar angle θ and the azimuthal angle φ. Plugging the Eq. (4.13) into Eqs. 
(4.11) and (4.12) and taking into account the pattern of the DM vectors as presented in Fig. 4.8a 
yields the expressions for the second and the fourth moment in the SrCu2(BO3)2 compound, 
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Fig. 4.7: X-band ESR linewidth anisotropy of the SrCu2(BO3)2 single crystal at 525 K
( ) and at 295 K with respect to the polar angle θ ( ) and the azimuthal angle φ ( ). The
solid lines correspond to the fit to the phenomenological model given by Eq. (4.11). 



 
110

 
( )

( )( ).cos1233
4
3

,cos1
2

2222
||4

2
2

||
2

θ

θ

+′−′+′=

+
′

=

JJJJDM

D
M

DM

DM

 (4.14) 

This according to Eq. (2.19) dictates the infinite-temperature linewidth angular dependence of 
the following appearance 
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The above-derived equation exhibits no φ-dependence, which is in excellent agreement with the 
experimental findings presented in Fig. 4.7. On the other hand, the predicted dependence on the 
polar angle is of the form ( )θ2cos1+ . This defers from the observed behavior in one important 
detail. Namely, there is an additional constant parameter A, which has to be included to account 
for the experimental data. A satisfactory fit is obtained only when this supplementary parameter 
is of the same order as the parameter B giving the angular dependence. Therefore, the magnetic 
anisotropy responsible for the deviation of the theoretical prediction from the experiment must 
be significant and cannot be simply ignored. In this sense the picture of only out-of-plane 
interdimer DM coupling is insufficient.  
 Symmetric anisotropic exchange, which should provide the second larger contribution to 
the anisotropy in the SrCu2(BO3)2 system as shown above, can be safely dismissed from the 
possible causes of the observed discrepancy for at least two reasons. First, it is more that an 
order of magnitude below the DM contribution and second, also the angular dependence 
dictated by the symmetric part of the anisotropic exchange does not improve the agreement 
between the theory and the experiment. Namely, the symmetric anisotropy can be presented by 
a symmetric traceless tensor with principal axes lying parallel to the principal axes of the g-
tensor [41]. As the corresponding anisotropy tensor is thus axially symmetric, the linewidth 
anisotropy is again of the form ( )θ2cos1+  hence again failing to give an explanation of the 
extra parameter A. Here it should be emphasized that A and B remain of the same size even 
when the high-temperature line-broadening contribution is subtracted. The latter accounts to 
approximately 10 mT at room temperature. 
 Clearly, the key to resolving the above-presented inconsistency between the observed 
ESR linewidth and the theoretical prediction lies in improving the magnetic anisotropy 
Hamiltonian. It seems that the approximation of the CuBO3 planes as being planar causes the 
observed discrepancy. In reality the CuBO3 planes are buckled below the structural phase 
transition occurring at K 395=sT  [4], so there is no ab mirror plane containing the dimers. As a 
direct consequence the center of inversion present in the middle of each dimer is removed. This 
allows also for finite intradimer DM coupling. The bending of the neighboring CuO4 plaquettes 
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can be the origin of nonzero in-plane components of the interdimer as well as the intradimer 
DM vectors. Moreover, the pattern of these vectors is well defined by the symmetry of the 
crystal as shown in Fig. 4.8b. Since the DM interaction is antisymmetric in its nature, the order 
of the spin operators is important. The orientation of the DM bonds is presented in Fig. 4.8 by 
thin arrows.  
 Let us first explore the possible pattern of the nearest-neighbor DM coupling vectors. The 
coupling between spin sites 1 and 2 is determined by the mirror plane m2 corresponding to the 
ξc plane, which includes the dimer. When performing symmetry operations one has to take 
special care of transforming the spins as a vector field. A symmetry operation O changes the 
orientation of the spin vector and its coordinate according to ( ) ( )[ ] ( )rSrSrS 1−=→ OOO . As 
spins are axial vectors, the effect of the mirror plane m2 is the following 
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The DM term connecting the spin sites 1 and 2 

Fig. 4.8: The two-dimensional network of Cu2+ ions with the corresponding pattern of the
Dzyaloshinsky-Moriya interaction for (a) only out-of-plane interdimer vectors and (b)
also in-plane interdimer as well as intradimer DM vectors allowed by buckling of the
CuBO3 planes. The thin arrows represent the chosen direction of the DM bonds while the
thick ones stand for the intradimer DM vectors. 
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 ( ) ( ) ( )ξηηξξξηηηξ
21211221211221211212 SSSSDSSSSDSSSSDH cccccDM −+−+−=  (4.17) 

turns after the transformation to 

 ( ) ( ) ( )ξηηξξξηηηξ
21211221211221211212 SSSSDSSSSDSSSSDH cccccDM +−+−++−=′ . (4.18) 

As m2 is the symmetry operator of the space group, DMDM HH 1212 =′ , which determines the DM 
vector ( )0,,02,1 ⊥= DD . The relation of the remaining intradimer vectors with this one is 
determined by applying translations and rotoinversion operations. For instance, the orientation 
of the DM vector connecting sites 3 and 4 is obtained by the use of the rotoinversion axis 

1/4 1/2, 0, ; 1/2, 0, :4 c+  [42] combining the anticlockwise rotation around the axis c 1/2, 0,  and 
the inversion through the point 1/4 1/2, 0,  with the coordinates given in the crystal frame. The 
position of the axis and the inversion point is presented in Fig. 4.8 by a dot. This symmetry 
operation causes the transformation of the spin operators 
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By comparing the DM terms joining the spin sites 3 and 4 before and after the transformation 
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the following relations are obtained 

 .0   ,0   , 123412341234 ===−=== ⊥
cc DDDDDDD ξηηξ  (4.21) 

 Similarly, if the interdimer DM interaction connecting the sites 1 and 3 is chosen as 
( )||13 ,, DDD ′′′=′ ηξD  all the remaining interdimer vectors can be constructed. In general, if two 

oriented DM spin pairs are connected by a mirror plane (m1 or m2) as is the case of the bonds 
( )3,1  and ( )3,2 , the component of the DM vector perpendicular to the mirror plane will remain 
unchanged while the two components within the plane will change their sigh due to the fact that 
the same sigh transformation occurs for the spin operators. Second, the connection of the 
interdimer DM bonds originating from the dimers lying along ξ axis and those along η axis can 
be found by the use of the rotoinversion axes in the same manner as it was shown above for the 
intradimer DM coupling. 
 The symmetry arguments allow us to describe the DM vector pattern with only one 
intradimer DM coupling parameter ⊥D  and three interdimer parameters || , , DDD ′′′ ηξ  as shown in 
Fig. 4.8b. The buckling of the CuBO3 planes thus induces additional in-plane DM vectors. Since 
it is expected that the size of the introduced in-plane intradimer DM interaction is greater than 
the size of the in-plane interdimer coupling, let us first neglect the latter interaction. The second 
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and the fourth moment of the expected ESR spectra in the limit of infinite temperature can be 
derived by the use of Eqs. (4.11) and (4.12) and the transformation given by (4.13), 
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with the exchange coupling parameters JJJJJ ′−′+= 233 222
1  and 222

2 613 JJJ ′+= . The 
anisotropy of the linewidth obtained by the use of Eq. (2.19), 
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again does not depend on the azimuthal angel as in the experiment, which is due to the 
orthogonal arrangement of spin dimers. In the above-derived expression the constant 

62π=C corresponding to a product spectrum of a Lorentzian function and an exponentially 
decaying function ( )JgBB Bµ0exp −−  was used as explained in chapter 2 below the Eq. 
(2.19). This approximation gives the highest value of the C constant and thus yields the best 
accordance of the experimentally deduced parameters with the known ones as shown in the 
following. 
 Although the above-obtained expression cannot be written in the form ( )θ2cos1++ BA , 
there is not much difference between the two angular dependences. The fit of the experimental 
anisotropy at temperatures 295 K and 525 K with the model given by Eq. (4.23) is presented in 
Fig. 4.9a. The high-temperature linear broadening is subtracted as it will be latter shown that it 
is not intrinsic to the spin system alone, but is rather an effect of the coupling of this system 
with phonons. The derived model fits the experimental data rather well. The parameters of the 
DM interaction for the temperature of 525 K, where the effect of the static spin correlations is 
expected to be absent, have values ( )K 14.2|| ⋅=′ BkD  and ( )K 10.4⋅=⊥ BkD . The parameters are 
only slightly larger at room temperature, i.e., by 0.1 K, which is due to the fact that the almost 
perfect linearly increasing broadening of the linewidth is seen above approximately 340 K. The 
estimated value of the interdimer exchange is in good agreement with the value evaluated from 
the fine splitting of the single triplet excitation K 1.2|| ⋅=′ BkD  [23]. When fitting the angular 
dependence of the linewidth the value of the isotropic exchange was taken as K 85⋅= BkJ  as 
evaluated from the temperature dependence of the static susceptibility [13]. However, recent 
analysis of the specific heat data in applied magnetic fields yields somewhat lower value of the 
nearest-neighbor exchange K 74⋅= BkJ  [27]. Such a value is also shown to be consistent with 
the magnetic susceptibility [27] as well as with the low-energy excitation spectrum determined 
from high-field ESR [30]. Smaller value of the isotropic exchange is also consistent with the 
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theoretical prediction of K 72⋅= BkJ  taking into account terms up to ( )14JJ ′  [12]. As also the 
ratio JJ ′  is not changed in these reports, such lowered values of the exchange parameters 
would decrease the estimated DM parameters by approximately 7% thus making our evaluation 
of the interdimer exchange surprisingly accurate. 
 If also finite in-plane interdimer DM coupling is taken into account the expression of the 
linewidth anisotropy is considerably more complicated as different components of the DM 
vectors get coupled, 
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The two functions introduced in the denominator of the above expression, 
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Fig 4.9: (a) The fit of the experimental X-band ESR linewidth anisotropy of the
SrCu2(BO3)2 single crystal measured at 525 K ( ) and 295 K ( ), with the high-
temperature linearly increasing contribution subtracted, with the model ( ) including the
intradimer DM coupling in addition to the interdimer out-of-plane components (Eq.
(4.23)). (b) A comparison of the accuracy of the same model ( ) and the model including
also the in-plane interdimer DM vectors ( ) on experimental data obtained at 525 K. 
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now introduce also the dependence on the azimuthal angle. The above expressions are strictly 
valid only when the values 0=′ξD  and ⊥′=′ DDη  of the in-plane interdimer DM vectors are 
assumed [43]. Recent inelastic neutron scattering experiments have indicated finite values of 
these vectors. Namely, an anomalous fine structure at the “normalized” wave vector 

( )0,0,23π=q , where the out-of-plane component ||D′  yields degenerated energy levels, was 
attributed to the in-plane component ⊥′D  [43]. The authors evaluated the latter component only 
in the limit 0=′J  to be ||4.0 DD ′≈′⊥ . 
 Taking into account this in-plane next-nearest neighbor DM component the quality of the 
fit is not essentially improved as shown in Fig. 4.9b. However, it leads to slightly lower 
intradimer interaction ( )K 16.3⋅=⊥ BkD  while the inter-dimer one ( )K 14.2|| ⋅=′ BkD  is 
unchanged. This is due to the fact that the Eq. (4.24) couples only the in-plane components of 
the intradimer and the interdimer interaction. As the size of the latter interaction was evaluated 
in the limit of no next-nearest isotropic exchange and our experiment can not separate between 
the contributions of ⊥D  and ⊥′D  terms, we can only make an estimation of the intradimer DM 
interaction with slightly larger error, ( )K. 56.3⋅=⊥ BkD  It should also be emphasized, that the 
dependence on the azimuthal angle predicted by Eq. (4.24) is insignificant. Thus, for instance, 
the linewidth varies within 0.01 mT at the polar angle ,0°=θ  in agreement with the 
experimental observation. 
 

Nature of the in-Plane Dzyaloshinsky-Moriya Interaction 

 
The evaluated value of the nearest-neighbor DM interaction seems to be surprisingly high, even 
more since it has been disregarded until very recently. This interaction should, however, be 
appreciable due to the static distortion of the CuBO3 planes below the phase transition 
temperature [4]. As explained in subsection 4.2.2 considering the anisotropy of the g-factor in 
the SrCu2(BO3)2 compound, the buckling angle of the CuO4 plaquettes with respect to the 
crystal c axis amounts to °= 4α  at room temperature. The expected nearest-neighbor DM 
interaction is then of the order K 8.1sin2 ⋅=⋅∆≈⊥ BkJggD α , which is far from being 
insignificant with respect to the interdimer DM coupling. 
 As already mentioned in the first section of this chapter, recently, numerous experimental 
evidences of the presence of considerable intradimer DM anisotropic exchange have been 
reported, including unusual 11B NMR lineshifts and the presence of the staggered magnetization 
[24, 25], the dependence of the relative intensities of the lowest-lying magnetically excited 
states observed by high-field ESR [26] and the magnetic field dependence of the specific heat 
measured at low temperatures [27]. The latter report also offers an estimation of the intradimer 
Dzyaloshinsky-Moriya interaction, ( )K25K22 K 2.2  .,  .,kB ⋅=D . However, the authors 
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included also a sizable out-of-plane component not allowed by the crystal structure even when 
buckling is present, as described by the symmetry arguments above. Such symmetry-forbidden 
component could be due to a distortion on the crystal structure in high magnetic fields [27], as 
implicated by a drastic reduction of the sound velocity in the SrCu2(BO3)2 system in magnetic 
field around 27 T [44]. The effect is believed to be due to a strong spin-phonon interaction 
coupling the lattice vibrations with the magnetic excitations. On the other hand, the evaluation 
of the in-plane component K 1.3=⊥D  is very close to our estimation. The splitting of the single 
triplet excitation has also been shown with the use of the Lanczos method on finite-size clusters 
of Shastry-Sutherland spin system, to be consistent with such a general form of the intradimer 
DM coupling [30]. Even more, the out-of-plane component is needed to explain the observed 
high-field ESR transitions for magnetic field applied along the anisotropy axis of the 
SrCu2(BO3)2 system. Second, also the recent prediction of the in-plane intradimer DM coupling 
on the basis of the 11B NMR lineshift, where the authors evaluated this interaction to be of the 
size ( )K 49.2⋅=⊥ BkD  [45], is consistent with our prediction. However, it should be 
emphasized that contrary to ours all the estimations of the intradimer DM coupling were made 
for very low temperatures. 
 The intradimer Dzyaloshinsky-Moriya interaction should vanish above the phase-
transition temperature of K 395⋅= Bs kT , above which the CuBO3 planes become flat in the 
static picture. Surprisingly, the observed ESR anisotropy is not affected by this structural phase 
transition at all. A credible explanation of this puzzle is provided if dynamical effects are taken 
into account [28, 31]. In this picture lattice vibrations instantaneously break local symmetry 
allowing for additional in-plane terms of the DM interaction. Due to the spin-orbit interaction 
the spin degrees of freedom cannot be decoupled from the space degrees of freedom. The 
Hamiltonian coupling the spin system with lattice vibrations is of the form [28] 

 ( )∑∑ ×+⋅=
dji

jiiddjiidd
sl udugH

,, ,βα

βααβαα SSSS . (4.26) 

The parameters α and β correspond to Cartesian coordinates while the variable α
idu  represents 

the displacement of the d-th ion in the vicinity of the spin site i from its equilibrium position. 
The first term is due to the isotropic spin-phonon coupling α

dg  while the second one represents 
the dynamical Dzyaloshinsky-Moriya effect. 
 There are, however, few general requirements to be fulfilled before including this 
mechanism into the interpretation of the X-band ESR results. First, dynamical effects can be 
observed when the characteristic phonon frequency is small compared to the characteristic 
exchange frequency hJe ≈ω  determining the spin correlation time τc. Since optical phonons 
are needed to produce required lattice distortions, significant softening of a particular normal 
mode should be present. Second, the mean square displacements of ions, participating in the 
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aforementioned lattice motion, from their equilibrium positions should be large enough to break 
the local symmetry significantly. It seems that both conditions are fulfilled in the SrCu2(BO3)2 
system.  
 Fortunately, the crystal structure and also the dynamical aspects of the SrCu2(BO3)2 
lattice have been thoroughly studied in the past [4]. Of our particular interest is the observation 
of a soft mode detected by Raman light scattering experiment. The analysis of the Raman shift 
of this mode based on the generally convincing symmetry argumentation was given quite 
recently [46]. The shift of the soft optical mode amounts to 62 cm-1 at T = 15 K. This value 
corresponds to a temperature of 89 K, which is thus very close to the isotropic exchange. It 
progressively softens, by 44 cm-1 just below Ts = 395 K, where the line disappears in a quasi-
elastic tail as presented in Fig. 4.10a. Apart from the drastic softening also a broadening of the 
recorder Raman peak is present when raising the temperature. Both features suggest on the 
anharmonicity of the ionic potentials. This soft mode corresponds to in-phase motion of almost 
all ions within the primitive cell (with exception of Sr2+ ions) preferably along the crystal c 
direction thus being of the interlayer nature. The evidence of the vibrations along this axis is the 
intensity of the observed Raman mode, which is by two orders of magnitude larger in the case 
when the polarization of the initial and the detected scattered electric field is parallel to the c 
axis than in case of the polarization being within the ab plane. This vibrational mode 
corresponds to the center of the Brillouin zone and transforms to Raman-inactive buckling 
modes in the high-temperature structural phase. The normal coordinates for the case of Cu, B 
and O(1) ions are given by 

 ( )cccc
a uuuuQ 43212

1 −+−= , (4.27) 

and for the case of the O(2) ions by 

 ( )cccccccc
b uuuuuuuuQ 8765432122

1 −−++−−+= . (4.28) 

The corresponding indexing of the displacements can be seen in Fig. 4.10b. A linear 
combination of the normal modes represents the observed soft mode. As already stressed, all the 
ions with exception of the Sr2+ ions vibrate preferably along the crystal anisotropy c axis, where 
also the movement of different ions is in phase. The latter feature is the origin of the large 
effective mass, i.e., low vibrational frequency [46]. 
 The softening and the broadening of this soft mode as well as its symmetry are also 
consistent with the observed anomalous anharmonicity of lattice properties. Namely, a 
flattening of the local potentials of ions and a significant enhancement of their mean square 
dynamic displacements in the crystal c direction have been observed, both phenomena 
progressively getting larger when approaching the transition to the high-T phase [4]. The x-ray 
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diffraction experiments revealed that in the high-temperature phase the average squares of the 
displacements for all ions (with the exception of Sr2+) are fairly large along the c axis and 
considerably smaller for the other directions. For instance, the U33 principal components of the 
displacement tensor of Cu and O(1) ions connecting them yield enhanced vibration amplitudes, 
which are virtually the same as static displacements (0.25 Å for Cu ions and 0.33 Å for O1 ions) 
of these ions at 100 K [4]. It is also interesting that the average displacements alongside two 
neighboring CuO4 plaquettes increase from O(2) across Cu to O(1) ions. When lowering the 
temperature and crossing to the low temperature phase the amplitudes get progressively smaller, 
however, their decrease is unexpectedly slow. The phase transition can be thus characterized as 
displacive transition, where the local minima of the ionic potentials progressively move along c 
direction and become steeper when lowering the temperature in the low-temperature phase. 
 From the X-band ESR point of view, such lattice vibrations break the local symmetry in a 
very similar way as it is broken in the low-T phase by finite static buckling of CuBO3 planes, 
since the distortions are quasi-static on the time-scale of the spin correlation time τc. 
Additionally, also the symmetry of the dynamic distortions is similar to the symmetry of the 
static one, as the in-phase movement of the ions corresponds to wave vector 0=q . Therefore, it 
is not surprising that the ESR linewidth anisotropy does not change qualitatively above room 
temperature despite crossing the structural phase transition. It is also worth mentioning that the 
isotropic exchange coupling constants are believed not to change significantly with temperature 

Fig. 4.10: (Ref. 46) (a) Softening of a phonon mode with temperature as observed by
Raman light scattering experiments in SrCu2(BO3)2 system and (b) site symmetry of the
ionic vibrations within the prime cell corresponding to this lattice vibration as given by
Eqs. (4.27) and (4.28). 
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[4]. For all the given reasons it seems most likely that the in-plane components of the DM 
interaction present in the high-temperature phase are due to the presence of the buckling soft 
modes, which instantaneously break the local symmetry. When crossing to the low-temperature 
structural phase the static displacements progressively take over the initiative. However, the 
origin of the nearest-neighbor DM interaction K 6.3=⊥D  can also be a combined effect of the 
static, i.e. buckling of CuBO3 planes, and the dynamical mechanism and evolves progressively 
into a dynamical source with increasing temperature. The obtained DM parameter is thus an 
“averaged” value since the displacements are time dependent. Our experimental findings 
strongly support the recently proposed picture of the dynamical DM interaction [28, 31]. 
 

Lattice Vibrations as Line-Broadening Mechanism in High-Temperature Regime 

 
The high-temperature increase of the X-band ESR linewidth in the SrCu2(BO3)2 compound is 
essentially linear above approximately 340 K up to 590 K, which is the highest temperature that 
could be reached with our experimental set-up. Moreover, the slope is within the experimental 
error independent on the direction of the external magnetic field as shown in Fig. 4.11a for the 
case of the single crystal. Its value is estimated by ( )mT/K 1035.0|| =k  and ( )mT/K 1033.0=⊥k  
for the magnetic field parallel and perpendicular to the anisotropy axis, respectively.  
 The increase of the linewidth between room temperature and 590 K amounts to 
approximately 10%. As already argued above, for a pure spin Hamiltonian, ESR linewidths are 
normally expected to approach a constant value for temperatures far above the characteristic 
exchange temperature BkJ . Nevertheless, several mechanisms can lead to a temperature-
dependent ESR linewidth at high temperatures, including spin diffusion, static spin correlations 
and spin-phonon coupling. Although the spin diffusion mechanism may become significant at 
higher temperatures, the measured Lorentzian ESR lineshape at 525 K speaks strongly against 
it. Second, the effect of static spin correlations on the linewidth can be observed in low-
dimensional magnetic systems even up to temperatures of the order of T ~ 10J, as shown by 
Soos et al. [47]. Following this original paper, the temperature-dependent second moment due 
to the Dzyaloshinsky-Moriya interaction can be calculated to have the form 
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The temperature dependence due to static spin correlations is hidden in the ratio between the 
Curie susceptibility χC and the measured susceptibility ( )Tχ  as well as in functions Cij 
reflecting two-site static spin correlation between spins at sites i and j as described in Chapter 2.  
 Each of the three sums in Eq. (5) yields its own characteristic temperature behavior, with 
the first one approaching the infinite-temperature second moment and the last two going to zero 
when increasing the temperature. The first of the sums can clearly be factorized into an angular-
dependent and a temperature-dependent part. The slope of the line broadening for this reason 
changes when changing the direction of the external magnetic field in the same manner as the 
magnetic anisotropy dictates the linewidth anisotropy. The influence of the other two sums on 
the angular dependence of the slope is not as easy to predict. However, it is highly unlikely that 
the two-site correlation functions Cij would evolve with temperature in such a way to produce 
angular-independent line broadening as observed in current investigation. Another reason 
allowing us to dismiss static spin correlations as the possible origin of the observed broadening, 
is almost ideal linear dependence in a rather broad temperature range, i.e. between 3.5J and 7J. 
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Fig 4.11: (a) The high-temperature linear increase of the X-band ESR linewidth of the
SrCu2(BO3)2 single crystal for the external magnetic field parallel ( ) and perpendicular
( ) to the c crystal axis. Note that the two vertical scales have the same range. (b) The
high-field ( GHz 2.93=Lν ) ESR spectrum of the SrCu2(BO3)2 powdered sample ( ) with
the corresponding theoretical Lorentzian curve for powder samples ( ). 
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In such a broad region one would expect significant bending of the linewidth curves towards the 
infinite temperature value if the broadening was due to short-range order effects. 
 Clearly, the spin Hamiltonian alone cannot provide an adequate explanation for the high-
temperature linear increase of the linewidth. Additional degrees of freedom causing lifetime 
broadening effects must be important. As already mentioned, the spin-phonon interaction is 
considerable in the SrCu2(BO3)2 system. Namely, the drastic decrease of the elastic constants, 
reflected in the reduction of the sound velocity as a function of temperature and even more in 
strong magnetic fields, speaks in favor of a strong coupling between the spin system and the 
lattice [44, 48]. Therefore, the spin-phonon coupling should be taken into account as a 
broadening mechanism at high temperatures. 
 As the increase of the linewidth is linear, normal direct phonon processes should be 
involved. Generally the line-broadening effects can be a consequence of different mechanisms. 
In particular, the observed line broadening can be due to the usual spin-lattice relaxation 
between Zeeman split excited states caused by the modulation of the dipolar coupling [49]. For 
this mechanism a strong dependence on the external magnetic field is typical as the spin-lattice 
relaxation rate increases proportionally to 2

0B . On the other hand, a modulation of the general 
anisotropic exchange can also lead to line broadening. The coupling of this kind is given in the 
Eq. (4.26). In connection with this expression, it is worth noting that the first term commutes 
with the Zeeman Hamiltonian due to its isotropic nature. Consequently, it does not induce line 
broadening. However, in some cases also the isotropic exchange coupling can induce a 
temperature dependence of the linewidth. Namely, when the ESR line is exchange narrowed the 
temperature variation of the isotropic exchange causes the linewidth to change with the 
temperature [50]. The temperature dependence of the exchange interaction follows from the 
thermal average of this parameter over the vibrational states in the case of an anharmonic 
potential. Second, the crystal lattice expands with increasing temperature, which causes a 
decrease of the isotropic exchange constant. It is expected that such changes of the isotropic 
exchange can noticeably affect the ESR linewidth only in systems with large thermal expansion 
constants [51]. To be precise, the mere modulation of the exchange constant due to the 
fluctuations of the interspin distances is only a secondary effect.  
 The effect of the time modulation of the Dzyaloshinsky-Moriya interaction on the 
lifetime of the magnetically excited states was studied by Seehra et al. [52]. The DM interaction 
in general causes mixing between the ground state and the excited states. The transitions 
between these states are then induced by a phonon modulation of the antisymmetric exchange 
interaction. Contrary to the case of the dipolar broadening, no magnetic field dependence is 
expected in the latter case. To test which of the two possible phonon-based broadening 
mechanisms is active in the SrCu2(BO3)2 compound, we recorded also a high-field 
( GHz 2.93=Lν ) room-temperature ESR spectrum on a powder sample, which is shown in Fig. 
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4.11b. Contrary to the X-band case, the absorption profile in high magnetic field shows 
characteristic g-factor anisotropy. This is not surprising as the interval of the resonant field 
spans ( ) %10|| ≈− ⊥ ggg  of the average resonance field value, which is around 35 mT in the X-
band and 350 mT in high magnetic field. The high-field ESR spectrum is nicely fitted by the 
Lorentzian function for powder spectra (see Fig. 4.11b), which yields anisotropic linewidths of 

( )mT 170== b
pp

a
pp BB δδ  and ( )mT 189=c

ppBδ . These parameters are virtually the same as the 
single-crystal X-band values ( )mT 169=⊥

ppBδ  and ( )mT 191|| =ppBδ . Since the linear 
contribution to the linewidth at room temperature is of the order of 10 mT and is the same at the 
two resonance fields differing by approximately a factor of 10, we can deduce that the spin-
lattice contribution to the linewidth is due to the fluctuating Dzyaloshinsky-Moriya interaction.  
 Making a rather crude approximation with neglecting correlation effects between a pair of 
interacting spins and their neighbors, the linewidth is determined by phonon-induced transitions 
between a singlet state and triplet states of a two spin system. Since J is two orders of 
magnitude larger than characteristic Zeeman energy and the phonon density scales with ω2 in 
the Debye approximation, it is not surprising for the modulated-DM-interaction effect to 
dominate over the phonon-induced Zeeman transition between the excited states. In the simple 
picture of uncorrelated dimers the finite-lifetime contribution to the linewidth is given by [52] 
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Taking the number of independent pairs as 1=Z , the parameter 10=Rλ  where R represents the 
nearest-neighbor distance and rrJ λ−=dd  [53], the density 3kg/dm 1.4=ρ  [44], an 
approximate average velocity c = 4600 m/s [54] in place of the complicated angular average, 
and the above estimated intradimer DM interaction K 6.3⋅== ⊥ BkDD , the slope of the 
linearly increasing part can be evaluated to be of the order of 0.014 mT/K. This result is in a 
reasonable agreement with the experimentally observed slope 0.034 mT/K bearing in mind that 
the mean velocity, which is burdened with the biggest uncertainty, is taken to the power of 5. 
Moreover, Eq. (4.30) is strictly valid only in the crude approximation of independent dimers. 
Since interactions with other neighbors in general shorten the lifetime of a spin in a certain 
energy level, the slope is expected to be larger in the real system. The fair agreement of this 
line-broadening mechanism with the experiment once again justifies the introduction of the 
intradimer DM interaction. 
 

Spin dynamics in Low-Temperature Regime 

 
Contrary to the high-temperature increase of the ESR linewidth, the low-temperature raise is 
much more enhanced as this parameter grows by approximately a factor of 3 between room 



 
123

temperature and 10 K. Fig. 4.12 shows a log-to-log plot of the linewidth with the high-
temperature linearly increasing part subtracted. It should be noted that the decrease of the 
number of phonons becomes a slower decreasing function than the linear function at 
temperatures around and below the spin-gap temperature. However, the phonon contribution to 
the linewidth at these temperatures is not appreciable. 
 The double logarithmic scale in Fig. 4.12 is appropriate for testing the potential 
dependence of the form 

 ( )ppp
TT
AB

*−
=δ . (4.31) 

The slope of the curve then simply corresponds to the exponent p, which is in our case given as 
( )141.0|| =p  and ( )147.0=⊥p  for the external magnetic field applied parallel and perpendicular 

to the c axis of the crystal, respectively. The critical temperature *T  is equal to zero within the 
fitting error. Similar observation with the slope ( )150.0=p  is made for the powder sample. The 
dependence of the linewidth given by the above expression is characteristic for critical slowing 
down of the spin fluctuations as observed when approaching a magnetic phase transition. 
However, the interval between 150 K and 15 K where the experimental broadening is well 
described by this equation is surprisingly broad. This can be a signature of the SrCu2(BO3)2 
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Fig. 4.12: The log-to-log plot of the linewidth of the SrCu2(BO3)2 single crystal without
the high-temperature linear contribution for the magnetic field at zero angle ( ) and at
right angle ( ) respectively to the crystal c axis showing the critical-type of the line
broadening ( ) as given by Eq. (4.31). 
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system lying in the close vicinity of the quantum boarder-line between the spin-liquid and the 
magnetically ordered ground state, which could in principle lead to strong enhancement of 
antiferromagnetic spin correlations. 
 For temperatures below 15 K the increase of the linewidth is not so intense as predicted 
by Eq. (4.31). In powder samples, which are purer than the only single crystals we have, even a 
decrease of the linewidth behavior is found below 10 K (see Fig. 4.6). This could be attributed 
to a reduced number of the triplet excitations making the interactions between them smaller. In 
may also signal on some structural changes in this temperature range. In should be noted that in 
contrast to the PbNi2V2O8 case the position of the line does not shift much with temperature 
even far below the spin-gap temperature. This can be seen by comparing the temperature 
evolution of the ESR spectra shown in Fig. 4.2. The origin of the ESR spectra must for this 
reason be hidden in the transitions within the energy continuum above the lowest-lying states 
[30]. In fact, employing the finite-temperature Lanczos method on finite-size spin clusters of 
Shastry-Sutherland lattice with the Dzyaloshinsky-Moriya interaction shows some preliminary 
indications of this sort. Namely, the predicted X-band signals corresponding to the g-factor 
around the free-electron value have very similar linewidth values as the observed signals. The 
linewidth seems to increase with temperature at very low temperatures similar to our 
experimental observations on powder samples below 10 K. However, the reverse of the 
behavior above this temperature is still not understood within the present spin model. Further 
analysis, currently in progress, is needed to resolve these issues. 
 
 
4.3 Doping of SrCu2(BO3)2 

 
On the basis of the similarities of the SrCu2(BO3)2 crystal and spin structure with high-Tc 
cuprates this material was suggested to possibly lead to superconductivity at low temperatures 
when properly doped with electrons or holes [2, 35, 36]. If this was indeed the case SrCu2(BO3)2 
could help to a better understanding of the superconductivity phenomena due to its relatively 
simple spin Hamiltonian. On the other hand, the investigated system is located close to the 
quantum boarder and features strongly frustrated exchange pathways. As in the case of the one-
dimensional PbNi2V2O8 spin-gap system presented in the previous chapter, small 
inhomogeneities introduced to SrCu2(BO3)2 could have a drastic impact on the magnetism of 
this material. In this sense doped SrCu2(BO3)2 system could provide some novel physical 
phenomena, which was our initial motive for performing a number of different experimental 
doping approaches [37].  
 Before going into details, it should be mentioned that not many experimental reports on 
the doped SrCu2(BO3)2 compounds have been given. Kageyama et al. [55] first reported their 
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successes of substitution doping. They managed to prepare phase-pure polycrystalline samples 
of Sr1-xAxCu2(BO3)2 (A = Ba, Ca) at least up to 3.0=x . The effect of the substitution is an 
expansion/contraction of the cell constants for the Ba2+/Ca2+ replacement, which can be 
attributed to a difference in ionic radii. On the other hand, the magnetic properties including 
susceptibility and the field dependence of the magnetization were not reported to change 
drastically, indicating that the spin-gap nature of the ground state was not altered. Besides the 
substitution-doped compounds at Sr site, only SrCu1.98Zn0.02(BO3)2 material has been reported in 
the literature [56]. The authors grew a single crystal of this compound and verified the 
successful Zn-substitution as well as phase-purity of the crystal. However, they failed to grow 
crystals with higher concentration of the Zn dopant. The Zn2+ impurities should naively brake 
copper singlet pairs thus creating localized S = 1/2 spins due to their spinless nature. 
Nevertheless, the magnetization curves once again showed no doping effect. 
 

4.3.1 Solid-State Chemical Reactions and Electrochemical Doping 

 
The most straightforward approach of doping is the conventional high-temperature solid-state 
reaction, where the choice of the starting materials is slightly altered with respect to the 
synthesis of the pure compound [1] in order to introduce the dopant into the crystal structure. 
High purity powders are weighted according to the purpose composition, pressed into pallets 
and then treated in the ordinary fashion. 
 Our initial attempt was to try to influence the magnetism of the copper planes by 
substituting the Sr2+-ionic CuBO3-plane spacers by ions with different valence states. The 
substitution of Sr2+ for La3+ was proved to be successful many times in different systems due to 
the similarity of the two corresponding ionic radii [57]. We tried to prepare different 
compositions of the Sr1-xLaxCu2(BO3)2 compounds with the substitution level ranging from 

02.0=x  to 5.0=x . However, the common feature of all the resulting materials obtained after 
several heating/grinding cycles was their phase inhomogeneity. In Fig. 4.13 transmission-
electron-microscopy image recorded in the back-scattered electrons mode on the sample with 
the stochiometry Sr0.95La0.05Cu2(BO3)2 is compared with the image corresponding to the pure 
system. In the picture of the latter compound (Fig. 4.13a) the gray lamellas covering the 
majority of the observation window correspond to the SrCu2(BO3)2, black holes are due to pores 
and the light-gray particles are the remains of the non-reacted CuO. Evidently, the size of the 
lamellas representing single-crystal grains is of the order of several tens of micrometers. On the 
other hand, in the case of the doped sample the dimension of the majority gray particles is much 
smaller and the material seems to be much more porous. The analysis of the ionic composition 
of the gray phase revealed that the percentage of the La content in it is significantly below the 
nominal concentration of 5%, which was verified by measuring the average composition in an 
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observation window of 2mm 11× . In addition, it varied from particle to particle and was usually 
even not seen. On the contrary, the bright (white) particles proved to contain an excess of 
lanthanum with its relative portion typically larger than that of the strontium. Unambiguously, 
the implementation of the lanthanum into the compound thus resulted in phase separation. 
Similar behavior was observed when the La2+ dopant was replaced with Pb2+, which seems to 
work well in the lead-nickel vanadates presented in the preceding chapter. Moreover, also the 
solid-state chemistry substitutions of Sr2+ for various alkali-metal and earth-metal ions failed. 
 The second approach we took was again a solid-state reaction but this time between 
already synthesized SrCu2(BO3)2 compound and a strong reducing agent. We measured 
stochiometric amounts of the strontium-copper borate and LiBH4, which is known for its strong 
reducing capabilities [58]. The mixture was annealed and the resulting powder changed its color 
from the initial blue, characteristic for the SrCu2(BO3)2 material, to brown, which could be an 
indication of a modified copper valence state. However, x-ray diffraction revealed that the 
crystal structure of the resulting material is not even similar to the starting one. Obviously some 
new material unrelated to the structure of the SrCu2(BO3)2 was synthesized. 
 Another way to affect the magnetism of the copper layers in the SrCu2(BO3)2 compound 
could be an intercalation of lithium ions into the crystal structure, since Li+ ions are fairly small. 
The electrochemical approach of lithium intercalation can be performed by galvanostatic 
discharge using an electrochemical interface. The electrochemical lithium insertion was carried 
out in a laboratory-made three-electrode cell [59]. The SrCu2(BO3)2 powder compound mixed 
with polyaniline, which improves electrical contact between grains, was used as the working 

(a) (b) 

Fig. 4.13: Transmission-electron-microscopy image recorded in the back-scattered
electrons mode for (a) the SrCu2(BO3)2 powder sample and (b) a representative
Sr0.95La0.05Cu2(BO3)2 powder sample synthesized by the conventional solid-state chemical
reaction. The major gray phase corresponds to the SrCu2(BO3)2 phase, the lighter gray
spots to a non-reacted CuO and black spots to pores. Additionally, the white parts in the
(b) image represent La-reach phase as explained in the text. 
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electrode. A lithium reference electrode and a lithium counter-electrode were used as the other 
two electrodes. The level of lithium insertion into the SrCu2(BO3)2 material was monitored by 
measuring the electric charge transfer between the two electrodes. After the electrochemical 
treatment the color of the starting material was again changed. However, also the crystal 
structure was significantly altered, much similar to the case of the solid-state reduction product. 
 

4.3.2 Liquid-Ammonia Method for n-Type Doping 

 
As the crystal structure of the SrCu2(BO3)2 compound seems to easily decompose if lithium is 
intercalated into the material by strong electrochemical potential, also a chemically soft method 
for n-type doping was used, previously proved to be successful in the case of fullerides [60]. In 
this case liquid ammonia was used as a solvent for the lithium metal and the alkali-metal liquid-
ammonia solution was applied to the strontium-copper borate. In dilute solutions a metal is 
typically dissociated into solvated metal ions and electrons [61]. In very pure ammonia the 
solvated electrons lifetime is measured in days. They are trapped into a polarization field of the 
electrons of the solvent giving rise to a typical blue color of the solution. Indeed, our metal-
ammonia solution turned blue from the initial colorless ammonia liquid. This solution was 
applied to the SrCu2(BO3)2 powder and after several hours the solution above the powder turned 
transparent again while the color of the powder changed from initial blue to dark gray. The 
colorless nature of the solution indicated that the lithium ions and the electrons had left the 
ammonia solution while the change of the color of the powder SrCu2(BO3)2 sample could be an 
indication of the modified valence state of copper ions. In this ideal scenario the Li+ ions would 
intercalate into the strontium-copper borate and the accompanying electrons would change the 
characteristics of the copper spin system.  
 

Structural Modifications due to Lithium Intercalation 

 
The experimental data presented below corresponds to the sample, where the nominal 
stochiometric ratio of the lithium ions with respect to the parent compound before the lithium 
intercalation procedure was set at 1:1. Due to losses it is expected that the amount of lithium in 
the LixSrCu2(BO3)2 intercalated compound is below this value. The modifications of the initial 
compound made by the lithium intercalation were first tested from the structural point of view. 
The x-ray diffraction pattern virtually matches the profile of the parent compound as indicated 
in Fig. 4.14a. This indicates that the static crystal structure of the resulting material is not 
significantly modified. Since lithium ionic ratio is fairly small, i.e. between 0.6 Å and 0.9 Å 
depending on the coordination [57], this could be an indication of Li+ ions intercalating 
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somewhere in the “free” space between the CuBO3 planes, which are roughly displaced by 
Å 3.32 =c . On the contrary of course, lithium ions might not have entered the crystal structure 

of the parent compound at all. 
 Second, also the dynamical aspect of the lattice modification was tested by Raman light 
scattering. The Raman spectra corresponding to the parent and the “doped” material are 
presented in Fig. 4.14b. Superficially speaking there is again no difference between the two 
materials. However, a closer look reveals that there are some minor dissimilarities as revealed in 
Table 4.1. 
 
Table 4.1: The position of Raman peaks in SrCu2(BO3)2 and LixSrCu2(BO3)2 samples and the 
observed shift of the latter with respect to the former sample. 
 

 Raman peak [cm-1] 

SrCu2(BO3)2 194.2 / 229.0 / 312.5 375.7 447.6 701.3 949.5 
LixSrCu2(BO3)2 194.1 215.5 ~228 238.8 307 375.0 444.8 698 948.5 

Shift -0.1 / ~1 / -5.5 -0.7 -2.8 -3.3 -1.0 
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Fig 4.14: (a) X-ray diffraction pattern and (b) Raman light scattering absorption peaks of
the parent SrCu2(BO3)2 material ( ) and the Li-intercalated LixSrCu2(BO3)2 sample
obtained by the liquid-ammonia method ( ). 
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The position of the observed Raman peaks agrees with previously published values [4, 46]. The 
relative Raman shifts vary between 0 and -5.5 cm-1. In addition, there is an indication of a new 
resonant peak occurring at 215.5 cm-1, which could also be the splitting of the peak positioned at 
194 cm-1. The intrinsic nature of the tiny hump at 238.8 cm-1 in the doped sample, on the other 
hand, is less certain. Moreover, the majority of the peaks corresponding to the doped sample are 
observably broader with respect to the peaks in the pristine compound, which indicates on a 
broader distribution of the vibrational frequencies.  
 

Changes in Magnetic Character 

 
As mentioned above, the color change of the SrCu2(BO3)2 sample could be a signature of the 
charge transfer. One would then expect the magnetic properties of the compound to change after 
the intercalation of the lithium. The comparison of the magnetic susceptibilities measured in the 
field-cooled regime in external field of 50 mT and the ESR linewidth behavior of the two 
samples are shown in Fig. 4.15. The susceptibility of the doped sample is reduced with respect 
to the one corresponding to the parent material by approximately 25%. However, the overall 
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Fig. 4.15: A comparison of the temperature dependence of (a) the magnetic susceptibility
and (b) the X-band ESR linewidth in the parent ( ) and the Li-intercalated ( )
SrCu2(BO3)2 samples. 
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character of its temperature dependence is not altered, which would indicate that the spin gap is 
not affected. This behavior is similar to the one reported for the substitutional doping, where 
Sr2+ ions were partially replaced by Ba2+ or Ca2+ ions [55]. The susceptibility reportedly 
decreased after the substitution for both types of dopants regardless of the fact that Ca2+ is 
lighter and Ba2+ heavier ion than the Sr2+ ion. 
 Second, the ESR measurements show virtually no changes between the absorption spectra 
in both samples. As indicated in Fig. 4.15b the linewidth behavior is unaltered, which would 
imply that the magnetic anisotropy as well as the temperature development of the spin 
correlations is not affected by the Li intercalation procedure. We have previously reported some 
minor changes to occur at low temperatures [37]. A different behavior of the linewidth below 
the linewidth-maximum temperature around 12 K was accompanied by the presence of a small 
amount of nonresonant absorption emerging in zero field. Also the magnetic susceptibility of 
that particular sample exhibited a peculiar kink in that temperature region. However, further 
analysis on different Li-intercalated samples prepared according to the same experimental route 
showed that all these effects were not reproducible. 
 To verify if the lithium is present in our sample at all, we performed 7Li NMR 
measurements in external magnetic field of 8.93 T. A relatively strong signal was observed 
close to the 7Li Larmor frequency. The temperature dependence of the NMR spectra between 
room temperature and 5 K is presented in Fig. 4.16. Before trying to account for the relatively 
broad experimental spectra a comment of the absolute intensity of the observed signal is in 
place. The measured intensity of the absorption was compared with two reference samples of 
diluted Li2CO3 solutions with different molarities (54 mM and 273 mM). Knowing the quantity 
of the 7Li I = 3/2 nuclei in all the samples allowed us to determine the stochiometry of the Li-
intercalated sample LixSrCu2(BO3)2, i.e., ( )14.0=x . The 7Li NMR signals were obtained with 
the solid-echo pulse sequence and since the resonance lines of the doped borate are fairly broad, 
also the decay of the echo intensity due to the spin-spin relaxation was taken into account by 
varying the duration τ between the two sequence pulses. The amount of the lithium within the 
doped sample is rather large, which seems to justify the exclusion of the possibility of the 
lithium intercalation resulting only in a “surface effect”. 
 Next, let us take a closer look at the observed spectra, which are plotted in Fig. 4.16 
against the frequency shift with respect to the Li2CO3 solution. As evident there is virtually no 
frequency shift of the center of the resonance, which is further confirmed by the temperature 
independent first moment of the resonance of around ( )kHz 50.11 =M  corresponding to a 
chemical shift of ~7 ppm. This experimental finding suggests that the oxidation state of lithium 
in the sample is Li+. If there were localized electrons at Li sites or itinerant electrons interacting 
with the Li nucleus significantly larger shifts would be expected. For instance the frequency 
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shift typical for the Li metal is 240 ppm [62]. On the other hand considerably smaller chemical 
shifts up to ±10 ppm are typically observed for Li+ ions [63]. 
 Although 7Li nuclei with spin I = 3/2 are “quadrupole” nuclei, the quadrupole splitting is 
not resolved in our case, which might be due to a distribution of the EFG components by 
magnitude and orientation. Second, the quadrupole structure of NMR spectra is not observed 
also when diffusion is present when the correlation time for the nuclear motion is short 
compared to the inverse of the quadrupole frequency. In this case, the quadrupole satellites 
collapse to a single line [64].  
 As the temperature is lowered from room temperature the spectra first exhibit broadening, 
reach a maximum around 15 K and then narrow observably as the temperature further decreases 
towards 5 K. In addition, the broader the resonance profile the more asymmetric it becomes. 
The appearance of the broad spectra is typical for the uniaxial-type of anisotropy, while the 
narrower ones at room temperature and 5 K appear symmetric. The temperature dependence of 
the second moment of the NMR lines shown in Fig. 4.17a mimics the dependence of the 
magnetic susceptibility and indicates that the observed broadening might be due to the 
interactions of Li nuclei with the paramagnetic spins within the parent SrCu2(BO3)2 compound. 
Furthermore, Fig. 4.17b shows the resonant field dependence of the linewidth. When lowering 
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Fig. 4.16: A collection of 7Li NMR spectra recorded in the Li-intercalated
LixSrCu2(BO3)2 compound in the magnetic field of 8.93 T. 
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the magnetic field from 8.93 T to 6.34 T the full width at half height of the 7Li absorption 
spectrum at room temperature decreases from ( )kHz 239.5  to ( )kHz 225.4 . The linewidth thus 
nicely scales with the magnitude of the external magnetic field, indicating that the linewidth 
broadening is of magnetic origin. The coupling of the 7Li nuclei with the copper spins strongly 
suggests that the intercalated lithium ions lay within the SrCu2(BO3)2 crystal structure. 
 A similar conclusion can be drawn from the spin-lattice relaxation, which was measured 
by the saturation method. The evolution of the relaxation rate divided by temperature with 
respect to temperature is shown in Fig. 4.18. Again a gap-like behavior can be recognized from 
the direct comparison of the relaxation rate with the static magnetic susceptibility. In the case of 
the isotropic electron-nucleus magnetic coupling being the dominant magnetic interaction 
sensed by nuclei, the general expression for the spin-lattice relaxation rate obtained from Eq. 
(2.42) reads [65] 
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Fig. 4.17: (a) The variation of the square root of the second moment of the 7Li NMR
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where the sum runs over the wave vectors in the first Brillouin zone. The parameter ( )0,ωχ q⊥′′  
represents the wave-vector-dependent dissipative part of the dynamic susceptibility for the 
directions perpendicular to the external magnetic field, evaluated at the Larmor frequency ω0. In 
the case of anisotropic electron-nucleus interaction the expression is rather more involved. 
However, the general observation of the relaxation rate, being proportional to the product of the 
temperature and the imaginary portion of the dynamic susceptibility, still holds. This part of the 
susceptibility is expected to follow similar activated temperature dependence as the static 
uniform susceptibility as they are connected through the Kramers-Kronig relations.  
 Similar temperature dependence of the two quantities presented in Fig. 4.18a thus 
unambiguously points at the interaction between the lithium nuclei and the paramagnetic 
electrons. Moreover, the low-temperature spin-lattice relaxation rate exhibits the gap-like 
behavior (see Eq. (3.30)) as shown in Fig. 4.18b. The obtained dynamical gap ( )K 229⋅= Bk∆  
is remarkably close to the spin gap value and the value of 30 K obtained from the copper spin-
lattice relaxation at low temperatures, when fitted by the same model [2]. 
 Since there is virtually no shift of the 7Li resonance from the value characteristic for the 
nonmagnetic lithium, the s contribution of the electron-nucleus coupling must be insignificant. 
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The dominant interaction would then originate from the dipolar coupling of the lithium nuclei 
with the nearby copper magnetic moments. The estimation of the distance r between a particular 
lithium nucleus to the nearest copper spin can then be made in the following fashion. According 
to Eq. (3.29) the expected spin-lattice relaxation rate is 

 ( ) 2

1 3
11

2
1

d
e

ASS
hT ω

π
h
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where dA  is an average dipolar coupling of the order 
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If the latter expression is plugged into Eq. (4.33) and the exchange frequency of 
hh JMMe 8.12

2
4 ==ω  [66] is calculated from the angle-averaged Eqs. (4.22) or 

equivalently (4.24), the evaluated lithium-nucleus–copper-spin distance of Å7.2=r  is 
obtained. Such a distance corresponds to the intercalated lithium ions being between the CuBO3 
planes. The 7Li spin-lattice relaxation thus, similarly to the temperature behavior of the 
linewidth, suggests on the lithium being within the crystal structure of the SrCu2(BO3)2. 
 Moreover, the dipolar coupling as the dominant electron-nucleus interaction can also 
explain the shape of the NMR absorption spectra. Namely, the anisotropy of the dipolar 
interaction is again of the order dA . Now, due to the powder nature of the sample and the 
electrons being partially polarized in the external magnetic field, i.e., ( ) BACumol gNBS µχ 0= , 
the expected linewidth as a consequence of the dipolar broadening is 

 kHz 13=≈
h

SAdδν . (4.35) 

This value is remarkably close to the magnitude of the observed linewidths. At high and low 
temperatures with respect to the spin gap the anisotropic character of the lineshape seems to be 
masked by an isotropic T2 relaxation of perhaps by diffusional motion of the spins. However, at 
mid temperatures, corresponding also to the maximum of the spin susceptibility, the anisotropy 
of the lineshape clearly pops up. 
 
 
4.4 Discussion on Magnetic Anisotropy and Doping Effects in 

SrCu2(BO3)2 

 
In summary, a comprehensive study of the magnetic properties of the two-dimensional spin-gap 
system SrCu2(BO3)2 has been presented in this chapter together with the attempts of doping this 
material through several different experimental routes. The anisotropy of the crystal structure is 
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reflected also in the anisotropic magnetic properties. The angular dependence of the position of 
the ESR line indicates that it is justified to treat the individual Cu2+ localized magnetic moment 
as being in a uniaxial-type of crystal environment. The small corrugation of the CuBO3 planes 
does not affect much the g-factor anisotropy. 
 On the other hand, this buckling of the crystal planes has a pronounce effect on the 
appearance of the magnetic anisotropy Hamiltonian in the SrCu2(BO3)2 compound, reflected 
through the angular and the temperature dependence of the ESR linewidth. The anisotropy of 
the rather broad linewidth thus sheds some important additional light on the spin anisotropy of 
the investigated systems. Namely, the previously proposed picture of the out-of-plane 
interdimer DM interaction as being the dominant anisotropic contribution, cannot adequately 
account for the experimental findings. In addition to such anisotropy terms, which were 
evaluated to be of the size ( )K 14.2|| =′D  from our high-temperature ESR linewidth anisotropy, 
employing the concept of exchange narrowing due to strong isotropic exchange, also sizable in-
plane component of the interdimer as well as the intradimer Dzyaloshinsky-Moriya coupling 
have to be included. The latter terms are not to be neglected as shown by various recent 
experiments including inelastic neutron scattering, high-field electron spin resonance, 11B NMR 
and specific heat measurements in high magnetic fields.  
 A complete pattern of the allowed Dzyaloshinsky-Moriya vectors has been constructed on 
the basis of the symmetry operations of the space group mI 24  as shown in Fig. 4.8b, 
corresponding to the low-temperature phase of the SrCu2(BO3)2 system. The permitted 
intradimer DM vectors thus lie in the ab crystal plane perpendicular to the direction of the 
dimers. This model satisfactory explains the observed ESR linewidth anisotropy and yields the 
intradimer DM interaction of the order of ( )K 56.3|| ⋅=′ BkD . The relatively high degree of 
uncertainty of this parameter originates from the fact that the in-plane components of the 
nearest-neighbor and the next-nearest-neighbor Dzyaloshinsky-Moriya interaction are coupled 
in the expression of the ESR linewidth. 
 However, when crossing the boundary of the low-temperature structural phase and the 
high-temperature one at K 395=sT , the static buckling of the CuBO3 planes disappears, which 
dictates the in-plane components of the Dzyaloshinsky-Moriya interaction to vanish due to the 
presence of the ab mirror plane containing the dimmers above the phase-transition temperature. 
On the contrary, our ESR linewidth anisotropy is not affected by this phase transition at all, 
which indicates that some additional mechanism to the static buckling has to be involved in 
creation of the finite intradimer DM coupling. In fact, the presence of soft-mode lattice 
vibrations with a particular symmetry in the low-temperature phase, as observed from the 
Raman scattering experiments, can be successfully associated with the dynamical braking of the 
local symmetry allowing for instantaneous antisymmetric interaction terms, otherwise forbidden 
by the crystal symmetry. These vibrational modes evolve into the high-temperature soft 
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buckling modes with large vibrational amplitudes along the crystal c axis thus making the phase 
transition masked on the time scale short with respect to the time scale of the lattice vibrations. 
Indeed, is has been argued above that the symmetry of the dynamical lattice distortion is very 
similar to the static distortion in the low-temperature phase. Additionally, also the amplitude of 
both types of deformation is comparable and the frequency of these optical soft-modes is far 
below the characteristic frequency of the ESR, which is determined by the isotropic exchange 
regulating the decay of the spin correlation functions. For all these reasons, it seems safe to 
propose that the origin of the intradimer Dzyaloshinsky-Moriya interaction in the high-
temperature structural phase is hidden in the dynamical soft-mode distortions. When crossing to 
the low-temperature phase this source most probably progressively evolves from the dynamical 
into the static origin. However, it should be emphasized that the amplitudes of the lattice 
vibrations stay sizable, i.e., comparable to the static displacements even down to 100 K, which 
represents the lowest temperature at which the crystal structure has been thoroughly studied. 
 The temperature dependence of the linewidth in the high-temperature regime above room 
temperature supports the picture of the sizable intradimer Dzyaloshinsky-Moriya interaction. It 
reflects the interplay between the spin and the lattice degrees of freedom. Namely, the linear 
increase can be attributed to the phonon modulation of the antisymmetric anisotropic exchange 
inducing lifetime-broadening effects. A rather crude model, taking the spin dynamics of the 
neighboring dimers as uncorrelated, provides a surprisingly good prediction of the slope of the 
high-temperature ESR linewidth increase, which is only roughly by the factor of two below the 
observed one. 
 On the other hand, the low-temperature increase of the linewidth is probably a 
consequence of the evolving static spin correlations. It shows critical-like temperature 
dependence between approximately 150 K and 15 K. Below 10 K the linewidth behavior 
changes its character, as a maximum of this parameter is observed. Due to the fact that the 
position of the line does not shift much with the temperature, we can seek the origin of the 
observed X-band ESR signal in transitions within the higher-lying energy continuum. 
 Doping the SrCu2(BO3)2 system proved to be a rather tedious job. It seems that unlike in 
the PbNi2V2O8 compound, the spin gap in the borate is much more robust. Also the chemical 
system itself acts more hostilely to any outside disturbance in a form of an impurity. Among 
many different approaches used when trying to dope the system with either electrons or holes 
only the liquid-ammonia-metal-solution method resulted in some concrete results. Though the 
color of the sample changed, which is usually a characteristic of the charge transfer, the 
combined picture of the structural and the magnetic measurements performed on the 
intercalated system is rather perplexing. Namely, from the structural point of view, no serious 
changes of the crystal structure parameters can be observed. Additionally, also the bulk 
magnetization measurements show that the magnetic nature of the ground state and the lowest-
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lying magnetically excited states is virtually unchanged, as only a reduction of the spin 
susceptibility can be observed while the activation behavior itself remains unaltered. 
Furthermore, also the spin dynamics reflected in the ESR linewidths is unaffected by the 
introduction of lithium. 
 On the other hand, 7Li NMR measurement serve with some rather convincing proofs that 
the lithium from the ammonia solution has entered the SrCu2(BO3)2 sample. However, it is well 
known that the intercalation mechanism involves the injection of both ions and electrons into 
the host matrix to balance the charge. One could then suppose that Li-clusters are formed inside 
or on the surface of the SrCu2(BO3)2 grains. However, such clusters would be seen by ESR in a 
form of narrower absorption lines as well as the NMR line position would shift significantly 
from the Larmor frequency of nonmagnetic Li+ ions. For these reasons, the possibility of the 
formation of the spin clusters can be ruled out. In fact, NMR linewidths, linear line-broadening 
with respect to the value of the external magnetic field, anisotropic lineshapes as well as the 
spin-lattice relaxation times speak in favor of lithium nuclei being dominantly coupled to the 
spin system of the host material by the magnetic dipole interaction. Even more, the value of the 
spin-lattice relaxation rate corresponds to Li nuclei being located at a distance of only few 
angstroms from the spin sites, thus probably lying between the CuBO3 planes. Such an 
arrangement of the intercalated ions could also account for the small but observable shifts of the 
vibration frequencies of the eigenmodes of the SrCu2(BO3)2 lattice observed by Raman light 
scattering. 
 The electrons introduced into the system should, though, in a naive picture, affect also the 
magnetism of the host system if we assume that the copper ions, which are the most serious 
candidates to except electrons, change their valence state from Cu2+ to Cu+. As the latter ions are 
nonmagnetic, this would explain the reduction of the magnetic susceptibility of the intercalated 
sample. However, the injected electrons break the dimer singlets and should thus impinge on the 
value of the spin gap, which is determined also by the frustrated next-nearest neighbor exchange 
coupling. As the spin gap as well as the spin dynamics seem not to be influenced much by the 
lithium intercalation, a more reasonable would appear the assumption that the lithium has 
reacted with something else due to the leakage in the experimental setup. But then again, such 
molecules would hardly be able to enter into the crystal structure of the host material. 
 The position of the lithium ions as well as the form they take insight the SrCu2(BO3)2 
structure is, unfortunately, still vague despite the considerable experimental effort that was 
undertaken. Further experimental investigation like neutron powder diffraction is, therefore, 
needed to clarify this issue. For the moment, it is thus the wisest idea to leave the question about 
the true position of the Li ions and the nature of their bonding with the host material in 
suspense. 
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5 CONCLUDING REMARKS 

 
The subject of this Thesis is a study of the role of magnetic anisotropy and doping on the 
magnetic properties of one- and two-dimensional antiferromagnets exhibiting a spin gap. We 
have chosen two recently discovered representatives, namely the one-dimensional Haldane 
system PbNi2V2O8 and the two-dimensional orthogonal dimer system SrCu2(BO3)2. As the 
extensive conclusions about the magnetic anisotropy, spin correlations and the effects of the 
impurities in these systems have already been given at the end of chapters 3 and 4, respectively, 
only short comments summarizing the general results in the light of the two topics presented in 
the introductive chapter are offered below. The experimental methods that were used in this 
work, namely the electron spin resonance and the nuclear magnetic resonance, were once again 
proven to be irreplaceable for extending the horizons about the magnetism in low-dimensional 
magnetic materials. Both experimental techniques yielded useful information on the nature of 
the low-energy excitations, the spin gap and the dominant magnetic anisotropy terms in the 
investigated compounds. 
 In both investigated parent materials, that is the PbNi2V2O8 as well as the SrCu2(BO3)2 
compounds, the signature of the quantum mechanics in macroscopic spin systems is clearly 
expressed. Namely, the ground states of these systems have the “singlet” nature. Our 
experimental findings suggest a similar situation also in the SrNi2V2O8 compound, which is 
isomorphous to the lead-nickel vanadate and was previously believed to exhibit magnetic order 
at low temperatures. 
 Second, there are many unsolved mysteries regarding the magnetism of these systems, 
which are a consequence of the presence of small but by no means negligible spin anisotropy. In 
this respect, the magnetic resonance experiments provided useful insight into this field. For both 
of the investigated materials the previously established picture of the dominant magnetic 
anisotropy terms was found to be inconsistent with our experimental results. For instance, in the 
case of the Haldane material PbNi2V2O8 a simple uniaxial-type of the single-ion anisotropy was 
suggested as the leading contribution in the literature. However, our arguments presented in 
chapter 3 speak in favor of a more complicated picture due to significantly distorted local 
environment. Additionally, also sizable Dzyaloshinsky-Moriya interaction between the nearest-
neighbor Ni2+ magnetic moments was evaluated. However, at present it seems rather unfeasible 
to check the validity of all our predictions since single crystals of this one-dimensional material 
do not yet exist. 
 On the contrary, the situation with the two-dimensional SrCu2(BO3)2 system is quite 
opposite. Performing X-band ESR measurements on a single crystal sample enabled us to 
improve the picture of the magnetic anisotropy in this material in a quite precise manner. 
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Namely, in addition to the out-of-plane interdimer Dzyaloshinsky-Moriya interaction previously 
suggested to be the dominant anisotropic contributions, we were able to identify also sizable in-
plane components of both the interdimer as well as the intradimer DM interaction. Using the 
symmetry arguments the pattern of DM vectors was constructed, which turned out to be in a 
good agreement with the experimental findings. Moreover, our experimental results highlighted 
also the importance of the spin-phonon coupling in the SrCu2(BO3)2 compound. In this respect a 
novel mechanism of dynamically broken local symmetry inducing spontaneous Dzyaloshinsky-
Moriya interaction was successfully implemented into the explanation of the experimental data. 
 The next open question presented in the introduction of this Thesis was the one regarding 
the impurity-doping effects. In this respect the two investigated spin systems turn out to be 
intrinsically different. In the case of substitutional doping the Haldane system PbNi2V2O8 the 
spin singlet ground state is broken in favor of the magnetically ordered ground state at low 
temperature at very small doping concentrations irrespective of the spin or spinless nature of the 
dopants and. This situation resembles the one encountered in spin-Peierls systems and in spin 
ladders, where the origin of the singlet ground state of the parent material is explained within 
the framework of the valence-bond model. There is, however, a pronounced difference in the 
temperature evolution of the spin correlations in the doped PbNi2V2O8 materials between the 
vacancy-doped (Mg2+) and “spin”-doped (Co2+) compounds. It was shown by our NMR 
measurement that magnetic fields of several tesla significantly suppress the antiferromagnetic 
correlations in the case of Mg-doping while these correlations are much more resistant in Co-
doped samples. 
 On the other hand, doping the two-dimensional SrCu2(BO3)2 compound is much more 
involved. Only intercalational doping with Li+ ions seems to be producing some concrete 
results. Introducing lithium should result in electron doping of the copper planes. In contrast to 
the PbNi2V2O8 compound the spin gap of the SrCu2(BO3)2 system is much more robust. The 
ground state of the spin system thus remains the singlet state even though a sizable amount of 
lithium ions should be present in the Li-intercalated sample. In a way, our results thus resemble 
the case of hole-doped spin ladders. Since this two-dimensional spin-gap system could, 
according to theoretical predictions, lead to superconductivity, the future investigations should 
be oriented also towards the hole doping of this material. After all, if the superconductivity is 
observed in the SrCu2(BO3)2 the accurate knowledge of the spin Hamiltonian of this system and 
its possible connection with the occurrence of the superconductivity could turn out to be a 
milestone in the understanding of this phenomenon. 
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EXTENDED ABSTRACT IN SLOVENE 
(RAZŠIRJEN POVZETEK V SLOVENŠČINI) 

 
1 Uvod v sisteme s spinsko energijsko režo 

 
Odkritje visokotemperaturnih superprevodnikov pred skoraj dvema desetletjema [1] je 
vzpodbudilo povečan interes tako po teoretičnih kot tudi po eksperimentalnih raziskavah 
nižjedimenzionalnih kvantnih magnetih sistemov. Vzrok temu gre iskati v dejstvu, da je spojine, 
ki pri ustreznem dopiranju postanejo superprevodne, moč obravnavati kot “idealne” planarne 
mreže lokaliziranih spinov 21=S , sklopljenih z izotropno antiferomagnetno izmenjalno 
interakcijo. Značilnosti visokotemperaturnih superprevodnikov so tako močne antiferomagnetne 
fluktuacije in pojav energijske reže v spektrih njihovih nizkoenergijskih ekscitacij 
(“pseudogap”) v območju dopiranja pod optimalnim nivojem. Slednja se pojavi že nad 
temperaturo prehoda v superprevodno fazo in bi lahko bila povezana z mehanizmom tvorbe 
Cooperjevih parov pod temperaturo prehoda. Ker so v tvorbo energijske reže vpletene pretežno 
spinske prostostne stopnje [2, 3], so posebej zanimivi ostali nižjedimenzionalni spinski sistemi, 
ki kažejo spinsko energijsko režo (“spin gap”) v spektrih nizkoenergijskih spinskih ekscitacij. 
Za razliko od dvodimenzionalnih so različni enodimenzionalni spinski sistemi podrobneje 
preučevani že vse od samih začetkov kvantne mehanike v prvi polovici prejšnjega stoletja. 
Spinske verige namreč v nasprotju z višjedimenzionalnimi spinskimi strukturami pogosto 
nudijo analitične rešitve [4] oziroma omogočajo natančnejše numerične približke. Nadaljnji 
vzrok razcveta področna nižjedimenzionalnih magnetnih sistemov je prav gotovo tudi znaten 
napredek na področju sinteze materialov, saj je kemija trdne snovi dandanes zmožna sinteze 
različnih “eksotičnih” in hkrati potencialno tehnološko uporabnih materialov. 
 Sama nižjedimenzionalna narava določenega spinskega sistema je povezana z izmenjalno 
interakcijo med spini, v pretežni meri omejeno bodisi na eno ali dve dimenziji. Vzrok takšne 
redukcije dimenzije spinskega prostora je sama kristalna struktura. Tako ta pogosto narekuje 
zmanjšano interakcijo v določeni smeri zaradi večjih razdalj med ioni ali pa zaradi manjkajočih 
nemagnetnih ionov, mediatorjev interakcije med posameznimi magnetnimi ioni. Sledni 
mehanizem izmenjalne interakcije imenujemo superizmenjalna interakcija (“superexchange”). 
Velikost magnetne sklopitve je v tem primeru kritično odvisna od same postavitve magnetnih 
ionov in nemagnetnih mediatorjev interakcije preko prekrivanja ustreznih ionskih orbital, kar 
popisujejo Kanamori-Goodenoughova pravila [5, 6]. Posledica zmanjšane dimenzionalnosti so 
močne kvantne fluktuacije, ki preprečujejo magnetno urejanje. Le-te so pogojene s samo 
topologijo izmenjalne interakcije, z medsebojno velikostjo različnih sklopitev in s prisotnostjo 
nečistoč, ki lahko bistveno vplivajo na osnovno stanje in nizkoenergijske ekscitacije [7, 8]. 
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 Čeprav je sama spinska konfiguracija posameznih osnovnih stanj, pripadajočih različnim 
magnetnim sistemom s spinsko energijsko režo, precej raznolika, pa je vsem skupen koncept 
tvorbe spinskih parov. Za sistem dveh spinov 21=S  je na primer osnovno stanje podano z 
antisimetrično kombinacijo Néelovih stanj, ( ) 2

 
↓↑−↑↓ , in je kot tako klasično 

nepredstavljivo. V primeru večjega števila sklopljenih spinov je formacija takšnih singletnih 
parov otežena. Posledično je splošna tendenca makroskopskih spinskih sistemov tudi v primeru 
zmanjšane dimenzionalnosti orientirana proti magnetnemu urejanju in odpravljanju spinske 
energijske reže, kar je delno povezano tudi s prisotnostjo členov magnetne anizotropije, kot bo 
to predstavljeno v nadaljevanju. Sistemi z energijsko režo in singletnim osnovnim stanjem so 
zato v naravi relativno maloštevilni. Ker je za njihovo nemagnetno osnovno stanje značilno 
hitro (eksponentno) padanje spinskih korelacij z razdaljo, jih imenujemo tudi spinske tekočine. 
Do takšnega osnovnega stanja in pripadajoče spinske energijske reže vodi več mehanizmov. 
Lahko sta posledica posebne oblike izmenjalne topologije, tekmovanja nasprotujočih se 
izmenjalnih mehanizmov, ki vodi do frustracije v spinskem prostoru, celoštevilčne narave 
spinov v primeru spinskih verig, ali pa dimerizacije mreže, ki je posledica zlomljene 
translacijske simetrije. 
 Sistemi s spinsko energijsko režo so relativno številčni v eni dimenziji glede na dve 
dimenziji. Prvo družino takšnih sistemov predstavljajo spin-Peierlsove organske [9, 10] in 
anorganske spojine [11, 12], za katere je značilno, da pride pod temperaturo prehoda v spin-
Peierlsovo stanje do dimerizacije kristalne mreže vzdolž verig, ki je posledica zamrznitve 
določenega mrežnega nihanja. Takšna deformacija kristalne strukture sicer povzroči povečanje 
elastične energije kristala, vendar pa je celokupna energija zmanjšana na račun urejanja spinov v 
singletne pare. Direktna posledica alternirajočih razdalj med sosednjimi spini vzdolž verige je 
namreč tudi alternirajoča izmenjalna interakcija, ki vodi do tvorbe spinskih singletov, kot to 
ponazarja slika 1.1. Podobna slika je realizirana tudi v primeru spojin Cu(NO3)2·2.5 H2O [13] in 
(VO)2P2O7 [14], kjer je alternirajoča narava izmenjalne interakcije v osnovi zagotovljena že 
brez prisotnosti mrežnih nihanj. Do energijske reže lahko vodi tudi tekmovanje interakcij med 
najbližjimi in drugimi najbližjimi sosedi znotraj spinske verige [15], lahko pa njen izvor sploh 
nima geometrijskega ozadja, kot v primeru celoštevilskih spinskih verig.  
 Haldane je v začetku 80ih let prejšnjega stoletja predlagal, da je narava osnovnega stanja 
celoštevilčnih spinskih verig precej drugačna od polceloštevilčnih verig [16]. Tako so za primer 
prvih značilni spinsko singletno osnovno stanje, eksponentno padajoče spinske korelacije v tem 
stanju in energijska reža do najnižjega vzbujenega stanja, medtem ko so v primeru slednjih 
spinske korelacije počasneje (potenčno) padajoče, med osnovnim in najnižjim vzbujenim 
energijskim stanjem pa ni končne energijske reže. Nadalje je osnovno stanje z energijsko režo 
tudi precej obstojnejše na zunanje perturbacije kot so sklopitev med verigami ali magnetna 
anizotropija [17]. Po drugi strani nemagnetno osnovno stanje na račun magnetnega v primeru 



 
147

polceloštevilčnih spinov podre že vsaka najmanjša perturbacija [16]. Trenutno najboljši 
približek osnovnega stanja celoštevilčnih (Haldaneovih) spinskih verig predstavlja tako 
imenovano “valence-bond solid” (VBS) osnovno stanje [18]. Shematsko je vzpostavitev spinske 
konfiguracije v Haldaneovem osnovnem stanju za primer spinov 1=S  prikazana na sliki 1.2. V 
tem primeru iz vsakega mrežnega mesta izvirata dve valenčni vezi, ki sklapljata obe izmed 
prostostnih stopenj 21=S  na tem mestu s sosednjima mestoma v singletno stanje. 
Upravičenost predlagane slike je bila tudi eksperimentalno dokazana z detekcijo prostih spinov 

21=S , induciranih v spinskih verigah [Ni(C2H8N2)2(NO2)]ClO4 (NENP) s spinom 1=S  poleg 
nemagnetnih nečistoč [19]. Danes obstaja že kar nekaj znanih Haldaneovih sistemov. Nekateri 
izmed njih so prikazani na faznem diagramu na sliki 1.4. Med njimi je tudi nedavno odkriti 
sistem PbNi2V2O8 [20], ki je predmet raziskave te disertacije. 
 Sistemi, ki povezujejo eno dimenzijo z dvema, so tako imenovane spinske lestve (“spin 
ladders”), v katerih je z znatno izmenjalno interakcijo povezano končno število spinskih verig. 
V primeru parov sklopljenih verig, kot v spojine SrCu2O3, je osnovno stanje zopet singletno 
[21]. Zanimiva lastnost spinskih lestev je prisotnost energijske reže v primeru sodega števila 
sklopljenih verig in odsotnost le-te v primeru, ko je število sklopljenih verig liho [22], kar je 
kvantna manifestacija dejstva, da je le sodo število spinov moč sklopiti v singletno stanje. S 
povečevanjem števila sklopljenih verig v limiti pridemo do dvodimenzionalnega primera, 
vendar pa tudi sama velikost energijske reže konvergira proti ničelni vrednosti [22]. Zato ni 
presenetljivo, da je znanih le malo dvodimenzionalnih magnetnih sistemov z energijsko režo. 
 Prvi primer dvodimenzionalne spojine z energijsko režo je CaV4O9, kjer je takšna narava 
osnovnega stanja posledica posebne topologije kristalne mreže [23]. Drug možen mehanizem, ki 
vodi do spinske tekočine, pa je frustracija izmenjalne interakcije v primeru spojine SrCu2(BO3)2 
[24], kjer je pomen antiferomagnetne sklopitev med drugimi najbližjimi sosedi zadušen na 
račun antiferomagnetne sklopitve znotraj parov najbližjih spinov zaradi geometrijskih razlogov, 
kot to prikazuje slika 1.3. Hamiltonka, ki popisuje omenjen sistem ortogonalnih spinskih 
dimerov, je topološko ekvivalentna s Shastry-Sutherlandovim modelov (glej sliko 1.3), 
obravnavanim pred več kot dvema desetletjema [25]. Gre za prvo fizikalno realizacijo 
omenjenega modela, katerega posebnost je eksaktno izračunljivo osnovno stanje, ki je preprost 
produkt singletov na posameznih dimerih. Magnetna anizotropija in efekt dopiranja na 
omenjeno spojino predstavljata drugi predmet raziskave te disertacije. 
 Kot je bilo že povedano, lahko na osnovno stanje in nizkoležeče magnetne ekscitacije 
odločilno vplivajo magnetna anizotropija, tridimenzionalna topologija izmenjalne interakcije in 
prisotnost nečistoč, ki podrejo homogenost v spinskem sistemu. V primeru energijske reže so 
osnovna stanja ponavadi obstojna glede na naštete dejavnike do neke mejne vrednosti, ko je 
energija določene ekscitacije v recipročnem prostoru znižana do mere, da povzroči ta ekscitacija 
vzpostavitev reda dolgega dosega. Primer energijskega diagrama rahlo sklopljenih Haldaneovih 



 
148

verig v prisotnosti magnetne anizotropije oblike 2
zcf SD  na posameznem mestu (“single-ion”) je 

prikazan na sliki 1.4. Kot je lepo razvidno, obe perturbaciji nasprotujeta tvorbi nemagnetnega 
Haldaneovega osnovnega stanja [26]. Podoben efekt na osnovno stanje Haldaneovih verig imajo 
tudi spinske nečistoče. Če koncentracija nečistoč brez spina na spinskih verigah preseže 
določeno mejno vrednost, se v snovi vzpostavi magnetni red dolgega dosega [17]. Ta efekt, ko 
nered v obliki nečistoč povzroči magnetno urejanje, je v literaturi znan pod imenom “order-by-
disorder effect” [27]. Omenjen učinek za primere različnih dopiranj tako z magnetnimi kot z 
nemagnetnimi nečistočami je bil pogosto opažen v 21=S  spinskih sistemih, kot so spin-
Peierlsov sistem CuGeO3 [11, 28] ali spinska lestev z dvema sklopljenima verigama SrCu2O3 
[29, 30]. Hiter razpad energijske reže in vzpostavitev antiferomagnetnega reda dolgega dosega v 
primeru nemagnetnih nečistoč je bila v primerih obeh spojin pripisana spinskim prostostnim 
stopnjam ,21=S  induciranim v neposredni bližini nečistoč kot posledica razdrtja singletnih 
vezi [29, 31]. Problem dopiranja sistemov z energijsko režo z lokaliziranimi nečistočami in 
superprevodnost v visokotemperaturnih kupratih, kjer mobilni nosilci naboja podrejo 
antiferomagnetno ureditev, se na prvi pogled zdita dva povsem nekorelirana pojava. Po drugi 
strani pa bi moral biti vpliv mobilnih nosilcev na ekscitacije določene spinske tekočine v 
tesnejši povezavi z visokotemperaturno superprevodnostjo. V tej luči je zanimiva nedavno 
opažena superprevodnost v spinski verigi/lestvi Sr0.4Ca13.6Cu24O41.84, dopirani z vrzelmi [32]. 
 Čeprav je v splošnem magnetno urejanje spinov kot posledica nečistoč precej raziskano 
področje, pa koherentne teorije še vedno ni. Ta disertacija zato ponuja nov eksperimentalni 
vpogled v to tematiko na primeru družine Mg- in Co-dopiranih spojin PbNi2V2O8, ki so prva 
realizacija Haldaneovega sistema z izraženim “order-by-disorder” efektom [20]. Po drugi strani 
je potencialno zanimivo tudi dopiranje dvodimenzionalne spojine SrCu2(BO3)2 [33, 34], zaradi 
formalne podobnosti njene strukture s strukturami visokotemperaturnih superprevodnikov [24]. 
 Drugi cilj te disertacije je podrobneje raziskati magnetno anizotropijo v obeh sistemih. 
Kot je bilo omenjeno, lahko ta bistveno vpliva na osnovno stanje in nizkoležeče ekscitacije v 
spinskih sistemih. Pri tolmačenju različnih pojavov, povezanih s spinskimi prostostnimi 
stopnjami nekega sistema, je zato dobro imeti kar se da jasno sliko o dominantnih prispevkih k 
magnetni anizotropiji.  
 S stališča reševanja zastavljenih vprašanj se zdijo magnetno-resonančne spektroskopske 
metode idealne [35]. Elektronska spinska resonance (ESR) lahko namreč nudi direktno sliko o 
magnetni anizotropiji in spinskih korelacijah v določenem spinskem sistemu, saj so končni 
eksperimentalni spektri odraz končne anizotropije, njihovo temperaturno spreminjanje pa 
odraža razvoj spinskih korelacij. Po drugi strani lahko tudi meritve jedrske magnetne resonance 
(NMR) uporabimo kot vir dodatnih, komplementarnih informacij o sistemu elektronskih spinov. 
To je mogoče, ko je sistem preučevanih jeder le rahlo sklopljen s sistemom spinov, da lokalna 
magnetna polja, ki jih ustvarjajo paramagnetni centri na mestu jeder, niso prevelika [36]. 
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2 Spinske korelacije in magnetna anizotropija v 1D Haldaneovem 
sistemu PbNi2V2O8 

 
O prvi sintezi enodimenzionalnega spinskega sistema PbNi2V2O8 so Uchiyama et al. prvič 
poročali šele na prelomu prejšnjega stoletja [20]. Gre za spojino, ki je izomorfna že kar nekaj let 
poznani spojini SrNi2V2O8 [37]. Kristalno strukturo obeh sistemov prikazuje slika 3.1a. V obeh 
primerih imajo le Ni2+ ioni magnetni moment. Kot je prikazano na sliki 3.1b, ti magnetni 
momenti z efektivnim spinom 1=S  tvorijo nenavadne spiralno oblikovane verige. Dominantna 
izmenjalna interakcija K 95⋅= BkJ  antiferomagnetnega značaja [20] med najbližjima 
sosedoma v verigi je posredovana preko dveh kisikovih ionov. Omenjena vrednost izmenjalne 
sklopitve je bila določena na podlagi visokotemperaturnih meritev magnetne susceptibilnosti in 
je nekaj pod napovedjo rezultatov neelastičnega nevtronskega sipanja [38, 39]. Slednje meritve 
so postregle tudi z oceno izmenjalne interakcije med drugimi najbližjimi sosedi v verigi 

K 5' ⋅= BkJ  in med sosednjimi verigami K 2- ⋅=⊥ BkJ . Enodimenzionalno naravo spinskega 
sistema so potrdile karakteristične magnetne ekscitacije z energijsko režo v primeru spojine 
PbNi2V2O8. Ta reža v limiti nesklopljenih verig znaša K 36|| ⋅= Bk∆  za Haldaneove ekscitacije 
polarizirane vzdolž spinskih verig in K 46⋅=⊥ Bk∆  za pravokotno polarizirane ekscitacije. 
 Najpomembnejši vir magnetne anizotropije v sistemu PbNi2V2O8 je distorzija NiO6 
oktaedrov. Avtorji prvega prispevka so predlagali dominanten člen magnetne anizotropije 
oblike 2z

icf SD , kjer z sovpada s smerjo kristalne osi c. Na podlagi tega modela, ki temelji na 
tetragonalni kristalni simetriji osnovne celice, je bila tudi ocenjena velikost magnetne 
anizotropije za posamezni ion, K 2.5- ⋅= Bcf kD  [38, 39].  
 Ustreznost te napovedi je moč oceniti z eksperimentom elektronske paramagnetne 
resonance [40, 41]. Spektri posneti v območju X ( GHz 3.90 =ν ) na praškastem vzorcu 
PbNi2V2O8, prikazani na sliki 3.2, potrjujejo, da gre za sistem z energijsko režo, saj intenziteta 
signala kaže tipično aktivacijsko obnašanje pri nizkih temperaturah. Širine eksperimentalnih 
spektrov δB so relativno velike, saj so primerljive z vrednostjo resonančnega polja Bc. Zato je 
potrebno upoštevati tako absorpcijo pri pozitivnem kot tudi negativnem resonančnem polju, kar 
jemlje v obzir Lorentzova funkcija 
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kjer A predstavlja intenziteto signala. Ujemanje te funkcije z eksperimentalnimi spektri je 
zadovoljivo, kot to prikazuje slika 3.2a. Pri temperaturah nad 150 K širina kot tudi vrednost 
resonančnega polja ne kažeta tako intenzivnega spreminjanja s temperaturo, kot pri nizkih 
temperaturah (glej sliko 3.3). Spreminjanje v tem območju lahko pripišemo temperaturnemu 
razvoju spinskih korelacij ali pa sklopitvi s fononskimi nihanji. Ker gre za manjše spremembe, 
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lahko širino spektra pri sobni temperaturi ( )T 136.0=ppBδ  direktno primerjamo s teoretično 
napovedjo v limiti neskončne temperature. Širina resonančnega spektra med obema vrhovoma 
je podana z drugim in četrtim momentom tega spektra, ki sta v primeru dominance izotropne 
izmenjalne sklopitve oblike [42] 
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Pri tem je celotna hamiltonka razdeljena na del Zex HHH +=0 , ki vključuje le izmenjalno 
interakcijo in Zeemansko sklopitev, in del H', ki ponazarja magnetno anizotropijo v sistemu. 
Operator M± je operator celotne magnetizacije, oglati in trikotni oklepaji pa zapored določajo 
komutator in operacijo termičnega povprečenja. Parameter θ v gornjem izrazu označuje kot med 
smerjo vektorja anizotropije za posamezni ion Dcf (kristalna os c) in smerjo zunanjega 
magnetnega polja B0. Širino spektra v limiti neskončne temperature podaja izraz [43, 44] 
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kjer nedoločenost konstante C (reda velikosti 1) izvira iz divergence obeh momentov v primeru 
povsem Lorentzovih spektrov. Predlagana magnetna anizotropija oblike 2z

icf SD  tako v 
praškastem vzorcu narekuje širino velikosti 
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kar je približno za faktor tri pod eksperimentalno vrednostjo. 
 Zgoraj predstavljeni model magnetne anizotropije se torej izkaže za neprimernega v 
sistemu PbNi2V2O8. To je moč pričakovati, saj temelji na simetriji osnovne celice in ne na 
dejanski lokalni simetriji kristalnega polja, ki ga čuti posamezni Ni2+ magnetni moment. Le-to je 
dominantno določeno s postavitvijo šestih najbližjih okoliških kisikovih ionov, kot to prikazuje 
slika 3.4 za primer spojine PbNi1.88Mg0.12V2O8, ki se po svoji kristalni strukturi naj ne bi 
bistveno razlikovala od starševske spojine [45]. Ker je distorzija lokalne postavitve kisikovih 
ionov od kubične postavitve daleč od tetragonalne simetrije, je pričakovati, da lasna os, 
pripadajoča dominantni lastni vrednosti tenzorja anizotropije na posameznem ionu, ne bo kazala 
v smeri kristalne osi c in da bodo vse tri lastne vrednosti bistveno različne. 
 V splošnem obstaja več pristopov, kako določiti tenzor anizotopije na posameznem ionu 
v primeru distorziranega polja ligandov [46]. Vendar pa je edina dostopna metoda kristalnega 
polja, ki obravnava interakcije med magnetnim ionov in njegovimi ligandi s stališča 
elektrostatskih interakcij v približku točkastih nabojev [47]. Kot taka, je direktno uporabna le v 
primeru redkih zemelj, za katere je značilno, da so njihove valenčne orbitale locirane bliže jedra 
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in se zato ponavadi znatno ne prekrivajo z orbitalami ligandov. V primeru Ni2+ ionov v spojini 
PbNi2V2O8 je prekrivanje valenčnih p orbital z okoliškimi kisikovimi orbitalami znatno zaradi 
relativno majhnih razdalj, velikosti 2 Å. Ta kovalenčni efekt onemogoča uporabo metode 
kristalnega polja in s tem natančnejšo določitev parametrov hamiltonke anizotropije za 
posamezen ion 

 ( )222
yxcfzcfcf SSESDH −+= . (5) 

Na podlagi ne(simetrije) NiO6 oktaedrov je mogoče napovedati le, da sta parametra Dcf in Ecf 
istega reda velikosti. 
 Nadalje je distorzija NiO6 oktaedrov lahko vzrok tudi antisimetrični anizotropni 
izmenjalni interakciji med dvema spinoma, imenovani interakcija Dzyaloshinsky-Moriya (DM) 
[48, 49], ki je oblike 

 jiij SSD ×⋅ . (6) 

Gre za interakcijo, ki je posledica prvega reda perturbacije v spinsko-orbitalni sklopitvi, njena 
velikost pa je omejena tudi s simetrijskimi argumenti [49]. Za primer spojine PbNi2V2O8 je te 
vrste anizotropna interakcija med najbližjimi sosedi oblike ( )jiji

ij D )3O()3O()2O()2O( nnnnD ×+×= , 
kjer so ustrezni vektorji definirani na sliki 3.4 in je parameter JggD ⋅∆≈ . Velikost 
interakcije je tako reda K 5.115.0 ⋅≈⋅∆≈ Bij kJggD , kar je primerljivo z oceno anizotropije za 
posamezni ion Dcf. Tako sta verjetno obe interakciji odgovorni za eksperimentalno širino 
resonančnih spektrov ESR. Natančnejša analiza pa bo mogoča šele, ko bo moč izvajati 
eksperimente tudi na kristalnih vzorcih. 
 Nadaljnji vpogled v sistem elektronskih spinov omogočajo meritve jedrske magnetne 
resonance na jedrih, ki so le rahlo sklopljeni s paramagnetnimi Ni2+ momenti. V ta namen smo 
si izbrali jedra 51V s spinom 27=I  [50], ki se v kristalni strukturi nahajajo med nikljevimi 
verigami in v obliki VO4 tetraedrov le-te povezujejo, kot kaže slika 3.1a. Spektri posneti v 
resonančnem polju T 34.60 =B  in temperaturno spreminjanje položaja njihovega centra so 
prikazani na sliki 3.6. Slednji parameter nedvoumno priča, da sta sistema nikljevih 
paramagnetnih spinov in vanadijevih jedrskih spinov sklopljena. Temperaturna odvisnost 
premika resonančne črte, ki izvira iz statične komponente lokalnega magnetnega polja na mestu 
določenega jedra, od vrednosti MHz 974.70=dia

Lν , pričakovane za povsem diamagnetne V5+ 
ione, namreč zadovoljivo sledi magnetni susceptibilnosti tega vzorca. Ker gre za meritev na 
praškastem vzorcu, neničelne premike povzroča le del efektivne prenesene hiperfine interakcije 
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jjii
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iH SAI ,

~~ , (7) 

ki je povezan z redistribucijo elektronske gostote v vanadijevim orbitalah s, kot posledica delne 
kovalence, to je prekrivanja nikljevih valenčnih orbital s kisikovimi in nadaljnjega prekrivanja 
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le-teh z vanadijevimi. Iz premika 51V resonančne črte kHz 300=∆ν  in vrednosti molarne 
susceptibilnosti molemu 106.52 3

0
−⋅== BSgN jBAmol µχ  pri sobni temperaturi, je potem 

moč oceniti velikost tega izotropnega prispevka k hiperfini interakciji na mestu vanadija 
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Kot rečeno, ta prispevek izvira iz redistribucije elektronske gostote v sicer zapolnjeni vanadijevi 
lupini 3s, ki je posledica interakcije s povprečnimi nikljevimi magnetnimi momenti, zato jo 
velja primerjati z velikostjo interakcije v primeru, ko je elektron v tej orbitali nesparjen [51], 
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kjer ( ) -32

3
Å 6010 =

s
ψ  ponazarja gostoto tega elektrona na mestu jedra za primer V5+ ionov [52]. 

Preprosta primerjava izrazov (8) in (9) govori o tem, da je delež nesparjenosti elektrona na 
mestu vanadija, ki je posledica interakcije z nikljevimi valenčnimi elektroni preko kovalenčnega 
efekta, enak 3105.2 −⋅≈w . Ta delež je znaten in upravičuje relativno veliko izmenjalno 
interakcijo med nikljevimi spini na sosednjih verigah, pri čemer pot izmenjalne interakcije 
poteka preko vanadijevih ionov. Podobnega efekta nikljevih elektronov na redistribucijo 
vanadijevih elektronov v orbitalah tipa p s stališča premika resonančne črte v praškastih vzorcih 
ni moč opaziti, saj se ta premik v povprečju izniči [53]. Lahko pa se anizotropni del hiperfine 
interakcije (7) odraža v obliki in širini absorpcijskih spektrov NMR. 
 Spektri NMR, posneti v celotnem temperaturnem območju med 300 K in 4.2 K, imajo 
karakteristično obliko kvadrupolnega spektra (glej sliko 3.7a), kjer so poleg centralnega prehoda 

2121 ↔−  prisotni še satelitski prehodi, simetrično premaknjeni od centralne črte za [54] 
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Parameter ( )hIIqQeQ 1243 2 −=ν  ponazarja kvadrupolno frekvenco, kota θ in φ pa zapored 
polarni in azimutni kot smeri zunanjega magnetnega polja v lastnem sistemu tenzorja gradienta 
električnega polja. Zaradi praškaste narave vzorca je položaj satelitskih prehodov izpovprečen 
glede na ta dva kota, iz položajev vrhov pa je moč oceniti velikost kvadrupolne frekvence na 

kHz 85≈Qν . Same razširitve centralne črte ( 2121 ↔− ) na polovični višini kHz 600 =δν  ni 
moč pripisati kvadrupolni interakciji, ki ta prehod razširi šele v drugem redu perturbacije [55] in 
povzroča širine reda velikosti kHz 15 2 ≈LQ νν . Nasprotno, naraščanje širine črte z naraščajočim 
resonančnim poljem (glej sliko 3.7b) priča o magnetnem izvoru te razširitve. Le-ta je lahko 
posledica že zgoraj omenjenega anizotropnega dela efektivne hiperfine interakcije, ali pa 
anizotropije kemijskega premika lokalnega polja ( )ii σBB −= 10 . Slednji je namreč v primeru 
ionov V5+ tipično velikosti nekaj sto ppm in je negativen [56, 57], kar ustreza eksperimentu. 
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 Nadaljnji problem, povezan z enodimenzionalnim Haldaneovim sistemom PbNi2V2O8, 
predstavlja razumevanje vzpostavitve reda dolgega dosega pri nizkih temperaturah v primeru, 
ko nikljeve ione delno zamenjamo z nečistočami. Že Uchiyama et al. so s pomočjo meritev 
magnetne susceptibilnosti pokazali, da delna zamenjava magnetnih ionov Ni2+ z nemagnetnimi 
ioni Mg2+ vodi do magnetnega urejanja pod ~3.5 K [20]. To so naknadno potrdile še 
termodinamske meritve specifične toplote, s pomočjo katerih so natančno določili potek 
temperature prehoda v urejeno fazo v odvisnosti od koncentracije dopiranja [58]. Kritična 
koncentracija za vzpostavitev reda dolgega dosega naj bi bila enaka nič oziroma zelo blizu tej 
vrednosti. Zamenjava Mg2+ ionov za prav tako nemagnetne ione Zn2+ bistveno ne vpliva na 
magnetno urejanje [59], kar priča o tem, da same nečistoče niso direktno vključene v formiranje 
magnetnega reda. Nasprotno pa nečistoče s spinov znatno spremenijo temperaturo prehoda v 
urejeno fazo. Tako recimo dopiranje z ioni Cu2+ ( 21=S ) naj ne bi vodilo do urejanja nad 2 K 
pri majhnih koncentracijah [59], medtem ko kobaltovi ioni Co2+ ( 23=S ) zvišajo temperaturo 
faznega prehoda, ki v primeru spojine PbNi1.92Co0.08V2O8 znaša 7.2 K [60].  
 Razvoj tridimenzionalnih spinskih korelacij v okolici prehoda v magnetno urejeno fazo v 
primeru družine z magnezijem dopiranih spojin smo preučevali z elektronsko spinsko resonanco 
[40]. Preučevane materiale lahko okarakteriziramo kot zamrznjene raztopine (“solid solutions”), 
saj je položaj zamenjave nikljevih ionov z nečistočami povsem naključen [45, 61]. Primerjava 
parametrov ESR na slikah 3.8 in 3.9 nazorno kaže, da je obnašanje signala v dopiranih vzorcih 
precej drugačno od starševskega vzorca. Spektri pri sobni temperaturi so si dokaj podobni z 
izjemo rahlega širjenja resonančnih spektrov v odvisnosti od koncentracije dopiranja (glej sliko 
3.12), pri nizkih temperaturah, to je pod karakteristično temperaturo spinske energijske reže, pa 
so razlike veliko bolj izrazite. Nizkotemperaturno komponento spektrov lahko pripišemo 
spinskim prostostnim stopnjam 21=S , induciranim kot posledica pretrganih Haldaneovih vezi 
poleg nečistoč [19], saj tako širina resonančnih spektrov pri najnižjih temperaturah, premik g-
faktorja, kot tudi intenziteta nizkotemperaturnega signala sledijo stopnji dopiranja. 
Temperaturno odvisnost zadnjega izmed parametrov je na primer moč opisati v luči 
kooperativnega tridimenzionalnega urejanja spinov, ki ga popisuje Curie-Weissov zakon 

( )NESR TTCI −=  (slika 3.9b in tabela 1). 
 
Tabela 1: Parametri prilagajanja modela ( )NESR TTCI −=  z nizkotemperaturnimi meritvami 
ESR na spojinah PbNi2-xMgxV2O8. Konstanti C in C/x imata poljubni enoti. 
 

x 0.04 0.08 0.10 0.12 0.15 0.24 

TN 2.5 K 3.0 K 3.3 K 3.4 K 3.5 K 3.4 K 
C 4.7 9.0 13.5 15.2 18.9 27.4 

C/x 118 113 135 127 126 114 
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 Širine nizkotemperaturnih signalov ESR v dopiranih spojinah PbNi2V2O8 so precej večje 
kot v primeru Haldaneovega sistema NENP, dopiranega z nemagnetnimi nečistočami [62, 63], 
in primerljive s širinami v magnetno dopiranih vzorcih NENP [19]. Ker sta širini signalov, 
posnetih pri sobni temperaturi v območju X ( )T 5429.0=X

ppBδ  in v visokem polju pri 10-krat 
višji frekvenci ( )T 5445.0=HF

ppBδ , praktično enaki (slika 3.10), lahko anizotropijo g-faktorja 
[62] izločimo kot možnega kandidata za razlago nepričakovano širokih spektrov v sistemu 
PbNi2V2O8. Inducirani spini 21=S  poleg nečistoč morajo biti zato med seboj sklopljeni. 
Magnetna anizotropija je v primeru feromagnetno sklopljenega para spinov oblike [64] 
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kjer je prvi člen posledica dipolarne interakcije med spinoma, drugi pa simetrične anizotropne 
izmenjalne interakcije, ki je reda velikosti ( ) Jggd ′∆= ~2 . Iz znane kristalne strukture je moč 
oceniti velikost dipolarnega polja mT 45=dB  in velikost prispevka simetrične anizotropne 
izmenjalne interakcije mT 9023 ≈Bgd µ , ki pa oba skupaj še zdaleč ne dosegata 
eksperimentalne širine. Le-ta v primeru največje stopnje dopiranja doseže pri temperaturi 5 K 
vrednost 515 mT. Pri oceni zadnjega prispevka je bila uporabljena velikost sklopitve med 
drugimi najbližjimi sosedi v čisti verigi J', ki pa v primeru pretrganih verig ob nečistočah 
verjetno ne daje prave slike. Inducirana spina 21=S  ob določeni nečistoči namreč povezuje 
drug vezni mehanizem, ki ne izvira iz prekrivanja nikljevih in kisikovih orbital med sosedi v 
verigi [17, 39]. Vsak “osvobojen” spin namreč na sosednji verigi inducira otoček alternirajoče 
urejenih spinov (“staggered magnetization”), ki efektivno sklaplja oba izmed spinov od neki 
nečistoči, kot to prikazuje slika 3.11. 
 Feromagnetna sklopitev med induciranimi spini 21=S  je sicer v nasprotju z napovedjo, 
ki so jo na podlagi paramagnetne in antiferomagnetne resonance naredili Smirnov et al. [65], 
vendar pa so nedvoumno potrditev naše hipoteze [40] dale nedavne meritve specifične toplote. 
Le-te so pokazale, da nečistoče Mg2+ efektivno inducirajo prostostne stopnje 1=S , torej 
feromagnetno sklopljene pare spinov 21=S  [66]. Takšna sklopitev pa sama po sebi še ne 
pojasnjuje linearne odvisnosti širine spektrov ESR od stopnje dopiranja pri temperaturi 5 K, kot 
to prikazuje insert v sliki 3.8a, saj sama temperatura urejanja kot parameter velikosti sklopitve 
med spini ne kaže podobnega monotonega obnašanja. Linearno širjenje kot posledica nečistoč je 
bilo v literaturi že obravnavano [67]. Pripišemo ga lahko delokalizirani naravi spinov, 
induciranih ob nečistočah, zaradi česar posamezni spini interagirajo med sabo. Poleg 
feromagnetne interakcije znotraj posameznega para spinov 21=S , sklopljenega v spin 1=S , 
je tako pomembna tudi interakcija med temi efektivnimi spini. 
 Za razliko od dopiranja z nemagnetnimi ioni magnezija pa dopiranje z magnetnim 
kobaltom bistveno vpliva na absorpcijske spektre ESR že pri sobni temperaturi, kot to prikazuje 
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slika 3.12. Vzrok temu lahko iščemo v dejstvu, da so ioni Co2+ znani po svoji hitri spinsko-
mrežni relaksaciji zaradi močne spinsko-mrežne sklopitve [68, 69]. Mehanizem spinske 
relaksacije na Ni2+ mestih poteka preko izmenjalne sklopitve *J  z ioni Co2+ in sklopitve le-teh z 
mrežo ter povzroča razširitev resonančnih črt ESR oblike [68] 
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kjer δB0 in δBimp zapored označujeta širino v čistem sistemu in inducirano razširitev kot 
posledico nečistoč. Parameter η predstavlja razmerje med stopnjo relaksacije ionov nečistoč in 
stopnjo prenosa magnetne energije iz sistema nikljenih na sistem kabaltovih ionov. Ker je 
spinsko-mrežna relaksacija močno temperaturno odvisna [70], 
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je pričakovati tako imenovano “bottleneck” obnašanje spreminjanja odstopanja širine črt ESR v 
dopiranih vzorcih od nedopiranjega vzorca, kot to nazorno kaže slika 3.13 za primer spojine 
PbNi1.98Co0.02V2O8. V izrazu (13) θD predstavlja Debyejevo temperaturo, neznani parameter a 
pa lahko na podlagi eksperimenta fiksiramo z relacijo ( ) ( ) ( )TTTT 11 K 55=η . Prilagajanje tega 
modela meritvam (glej insert k sliki 3.13) narekuje Debyejevo temperaturo K )50(500=Dθ  in 
velikost razširitve črt ESR zaradi nečistoč mT 120=impBδ . Zadnji parameter določa velikost 
izmenjalne sklopitve med nikljevimi in kobaltovimi ioni K 11* ⋅= BkJ  preko relacije [69] 
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kjer *S  predstavlja velikost kobaltovih spinov in ( ) 22 312 h+′= SSZJeω  izmenjalno 
frekvenco znotraj sistema nikljevih spinov. Ta enačba napoveduje linearno odvisnost razširitve 
spektrov ESR od stopnje dopiranja z ioni Co2+, kar je evidentno izraženo na sliki 3.12. Vnos 
nečistoč Co2+ v spinski sistem PbNi2V2O8 tako nudi informacijo o fononskih nihanjih tega 
sistema preko parametra Debyejeve temperature. Žal pa trenutno še ni objavljena nobena druga 
eksperimentalna meritev, ki bi lahko služila kot referenca oceni tega parametra. 
 Direktna primerjava razvoja spinskih korelacij pri temperaturah reda velikosti energijske 
reže in obnašanje le-teh v okolici temperature magnetnega urejanja za obe vrsti dopiranj ni 
mogoča na podlagi meritev ESR, saj so v primeru dopantov s spinov eksperimentalni spektri 
preširoki. Po drugi strani pa nam to primerjavo nudijo meritve NMR na jedrih 51V, kjer 
vanadijeva jedra služijo kot sonde, šibko sklopljene s sistemom nikljevih paramagnetnih 
momentov. Primerjava spektrov NMR v dopiranih vzorcih s starševsko spojino (glej sliki 3.6a 
in 3.14) pričakovano pokaže znatne razlike pri nižjih temperaturah, presenetljivo pa razkrije tudi 
odvisnost spektrov od narave dopanta. Tako je nizkotemperaturna razširitev spektrov v 
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dopiranih vzorcih precej bolj izrazita pri dopiranju z ioni Mg2+, različna pa je tudi sama oblika 
resonančnih črt. Le-te so v primeru magnezija asimetrične, v primeru kobalta pa simetrične. 
Primerjava temperaturne odvisnosti prvega in drugega momenta resonančnih spektrov, to je 
njihovega položaja in širine, je za obe vrsti dopiranja prikazana na sliki 3.15. Očitna je razlika 
tako prvega momenta, ki je odraz statične komponente lokalnih magnetnih polj, kot tudi 
drugega momenta, ki predstavlja fluktuacije teh polj pri Larmorjevi frekvenci. Kljub temu da v 
primeru obeh vrst dopiranja spojine kažejo antiferomagnetno urejanje pri nizkih temperaturah, 
pa je razvoj spinskih korelacij v bližini magnetnega prehoda povsem drugačen, vsaj kar se tiče 
eksperimentalnega magnetnega polja 6.34 T. To opažanje je v skladu z nedavno ugotovitvijo, da 
vzorci dopirani z magnezijem kažejo metamagnetizem [61, 66]. V relativno majhnih magnetnih 
poljih se namreč antiferomagnetno urejeno osnovno stanje podre na račun feromagnetnega 
urejanja spinov [71]. Eksperimentalni spektri tako implicirajo, da pri nizkih temperaturah v 
vzorcih z nečistočami Mg2+ prevladujejo feromagnetne spinske korelacije, samo asimetrično 
obliko pa lahko pripišemo efektivni hiperfini interakciji tipa p. Po drugi strani v primeru kobalta 
kot dopanta dominanco ohranijo antiferomagnetne fluktuacije, v kar nas dodatno prepričajo 
meritve spinsko-mrežnega relaksacijskega časa, ki pri temperaturi 7 K v primeru spojine 
PbNi1.92Co0.08V2O8 kaže očitne indikacije magnetnega prehoda (glej sliko 3.17). Iz simetrične 
oblike spektrov lahko sklepamo, da pri takšni antiferomagnetni konfiguraciji spinov postane 
dominantna izotropna efektivna hiperfina interakcija tipa s, dvogrbo strukturo v urejeni fazi pa 
lahko pripišemo efektu statičnih dipolarnih polj urejenih spinov.  
 Spojina SrNi2V2O8 naj bi za razliko od njej izomorfne spojine PbNi2V2O8 na Sakai-
Takahashijevem faznem diagramu ležala v področju z magnetno urejenim osnovnim stanjem 
(glej sliko 1.4). Ta ugotovitev je plod neelastičnega nevtronskega sipanja [38], vendar pa je 
nekoliko kontradiktorna. Že njeni avtorji so priznali, da pod temperaturo 7 K, kjer naj bi prišlo 
do magnetnega urejanja, niso v eksperimentih rentgenskega sipanja opazili nobenih dodatnih 
Braggovih vrhov, kar so upravičili s predpostavko, da so velikosti urejenih magnetnih 
momentov zelo majhne. Po drugi strani pa zaradi same eksperimentalne nenatančnosti v 
primeru nevtronskega sipanja niso izključili možnosti prisotnosti manjše, a končne energijske 
reže. Da bi razjasnili ta nesoglasja smo sami opravili eksperimente ESR in NMR na jedrih 51V v 
tej spojini, katerih rezultati so prikazani na sliki 3.18. Primerjala spektrov ESR kaže, da med 
obema izomorfnima sistemoma ni bistvenih razlik. Sicer opazna razlika v širini spektrov se s 
temperaturo zmanjšuje, v okolici temperature domnevnega magnetnega prehoda pa ni zaznati 
nobenih sprememb. Nedvoumno podobnost med sistemoma, to je obstoj energijske reže tudi v 
spojini SrNi2V2O8 pa da primerjava parametrov NMR. Tako prvi moment resonančne črte kot 
spinsko-mrežna relaksacija namreč kažeta na aktivacijsko obnašanje pri nizkih temperaturah. 
Odsotnost kakršnihkoli anomalij pri temperaturi 7 K tako implicira, da vsaj v primeru 
resonančnega polja 6.34 T v sistemu SrNi2V2O8 ne prihaja do magnetnega urejanja.  
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3 Magnetizem v 2D sistemu ortogonalnih dimerov SrCu2(BO3)2 

 
Spojina SrCu2(BO3)2 je bila prvič sintetizirana že v začetku 90ih let prejšnjega stoletja [72], 
vendar pa je pravo revolucijo v smislu njene prepoznavnosti povzročil šele članek Kageyame et 
al. [24]. Spojina je požela veliko zanimanje tako eksperimentalne kot tudi teoretične 
raziskovalne sfere, kar gre v pretežni meri pripisati relativno enostavni osnovni hamiltonki 
sistema in uspešni sintezi precej velikih kristalnih vzorcev zadovoljive kvalitete [73]. Osnovna 
celica te spojine je prikazana na sliki 4.1 in kaže tipično planarno strukturo, kjer si ravnine 
CuBO3, razmaknjene z Sr2+ ioni, sledijo vzdolž kristalne osi c. Bakrovi ioni Cu2+, ki imajo edini 
v strukturi magnetni moment ( 21=S ), tvorijo dvodimenzionalno mrežo ortogonalnih dimerov, 
prikazano na sliki 1.3. Izmenjalna sklopitev znotraj dimerov je antiferomagnetna K 85⋅= BkJ . 
Sklopitev s štirimi drugimi najbližjimi sosedi JJ 63.0=′  je tudi znatna, medtem ko je sklopitev 
med ravninami JJ 09.0|| =  precej manjša, kar upravičuje dvodimenzionalno naravo tega 
spinskega sistema. Ta nabor konstant izmenjalne interakcije najbolje popiše temperaturni potek 
magnetne susceptibilnosti vzorca [74], predlaganih pa je bilo tudi nekaj nekoliko, a ne bistveno 
različnih naborov [75, 76]. Spinski sistem SrCu2(BO3)2 je bil kmalu prepoznan kot prva 
realizacija teoretičnega modela Shastry-Sutherlanda [24]. Topološka ekvivalentnost omenjenih 
kristalnih mrež je prikazana na sliki 1.3. Posebnost modelske hamiltonke 
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je eksaktno rešljivo osnovno stanje do kritičnega razmerja izmenjalnih konstant ( ) 68.0=′ cJJ  
[77]. To je preprost produkt singletnih spinskih funkcij na posameznih dimerih, ki ostane 
osnovno stanje tudi v primeru končne sklopitve med ravninami [78]. 
 Znotraj modela ortogonalnih dimerov (“orthogonal dimer model”) je najnižje vzbujeno 
stanje preprosta tripletna ekscitacija na enem od dimerov, ki je bila prvič eksperimentalno 
opažena z meritvami ESR v visokih poljih [79] in nato potrjena z različnimi eksperimentalnimi 
tehnikami [80, 81, 82]. Čeprav je model ortogonalnih dimerov ustrezen za marsikatero 
magnetno lastnost sistema SrCu2(BO3)2, med drugim upraviči tudi prisotnost platojev v 
magnetizacijski krivulji [24, 83, 84], pa ne pojasni nekaterih manjših detajlov, kot je recimo fina 
struktura najnižje tripletne ekscitacije [79, 80]. Kot rešitev te uganke so Cépas et al. predlagali 
magnetno anizotropijo tipa Dzyaloshinsky-Moriya [85] 
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Takšna oblika antisimetrične spinske interakcije le med drugimi najbližjimi sosedi sledi ob 
aproksimaciji CuBO3 struktur s planarnimi ravninami, ko center inverzije na sredini vsakega 
dimera prepoveduje intradimerno interakcijo DM, interdimerni vektorji K 1.2|| ⋅=′ BkD  pa so 
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tudi zaradi simetrijskih razlogov usmerjeni pravokotno na te ravnine. Vendar pa množica 
nedavnih eksperimentov priča, da takšna aproksimacija ni upravičena. Tako na primer 
nenavadni premiki črt NMR na jedrih 11B pri nizkih temperaturah in znatna alternirajoča 
magnetizacija (“staggered magnetization”) [86, 87], relativne intenzitete prehodov med 
osnovnim in najnižjimi vzbujenimi stanji [88], kot tudi temperaturna odvisnost specifične 
toplote pri nizkih temperaturah v visokih magnetnih poljih [89] vsi implicirajo na znatno 
intradimerno interakcijo Dzyaloshinsky-Moriya. Le-ta je ob upoštevanju gubanja (“buckling”) 
CuBO3 ravnin [90] simetrijsko dovoljena v primeru, da vektorji DM ležijo v kristalni ravnini ab. 
Kljub temu da takšna interakcija meša tripletna stanja k singletnemu v osnovnem stanju sistema 
in s tem v osnovi omogoča magnetne dipolne prehode med osnovnim in vzbujenimi stanji, pa 
povsem ne pojasni eksperimentalno detektiranih spektrov ESR v visokih magnetnih poljih [85, 
91]. Zato je bila pri nizkih temperaturah upoštevana tudi prisotnost simetrijsko prepovedane 
intradimerne komponente, vzporedne s kristalno osjo c [89, 91], ki pa bi zahtevala strukturni 
fazni prehod. Alternativno so Cépas et al. predlagali, da bi v sistemu SrCu2(BO3)2 lahko bil 
pomemben dinamični mehanizem zloma lokalne simetrije [92, 93]. V dinamični sliki fononi 
zlomijo lokalno simetrijo in tako omogočijo dinamične komponente interakcije Dzyaloshinsky-
Moriya, ki so v statičnem modelu zaradi simetrijskih razlogov lahko prepovedane. 
 Vendar pa trdnega dokaza o pomembnosti dinamičnih komponent interakcije DM v 
sistemu SrCu2(BO3)2 še vedno ni. Ker je elektronska spinska resonanca občutljiva na magnetno 
anizotropijo te vrste smo izvedli serijo meritev v področju X tako na praškastih vzorcih [94], kot 
tudi na kristalnem vzorcu [95, 96]. Slednji eksperimenti zaradi možnosti opazovanja kotne 
odvisnosti magnetne anizotropije preko razvoja širine resonančnih spektrov pri različnih 
orientacijam zunanjega magnetnega polja glede na kristalne osi ponujajo tudi možnost 
razlikovanja in ovrednotenja posameznih prispevkov k magnetni anizotropiji sistema. 
 Intenziteta spektrov ESR, posnetih na praškastem vzorcu med sobno temperaturo in 5 K, 
kaže aktivacijsko obnašanje (glej sliko 4.2), kar je v skladu z energijsko režo. Spektri so 
Lorentzove oblike (enačba (1)) tako na praškastih kot tudi na kristalnem vzorcu, kot to nazorno 
prikazujeta sliki 4.2a in 4.3a. Natančnejšo določitev odstopanja eksperimentalnih spektrov od te 
oblike omogoča standardna primerjava spremenljivke ( ) ( )( ) 21

02 BIBIBBY ppmax δ−−=  v 
odvisnosti od ( )( )2

02 ppBBBX δ−= , prikazana na sliki 4.3b, kjer ( )BI  označuje intenziteto 
signala in Imax njen maksimum. Opažena linearna odvisnost potrdi domnevo o Lorentzovi obliki 
spektrov in izloči možnost večjega vpliva spinske difuzije na absorpcijske spektre ESR [97]. 
 Širine eksperimentalnih spektrov so podobno kot v primeru enodimenzionalne spojine 
PbNi2V2O8 precejšnje, kar priča o znatni magnetni anizotropiji v sistemu. Temperaturni potek 
tega parametra, prikazan na sliki 4.6, govori o dveh različnih območjih obnašanja med 5 K in 
600 K, saj kaže širina minimum okoli sobne temperature tako v praškastih vzorcih kot tudi pri 
različnih orientacijah zunanjega magnetnega polja v kristalnem vzorcu. Visokotemperaturni 
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linearni porast širine z naraščajočo temperaturo je posledica sklopitve spinskega sistema z 
mrežnimi nihanji, kot bo pokazano v nadaljevanju. Ker torej ne gre za intrinzično širino, ki bi 
sledila iz samega spinskega sistema, bomo ta prispevek v nadaljevanju pri interpretaciji 
eksperimentalnih rezultatov s spinsko hamiltonko preprosto odšteli. Izmerjena širina spektrov 
med obema vrhovoma, ki v minimumu za praškaste vzorce znaša ( )mT 178=p

ppBδ , za kristalni 
pa ( )mT 191|| =ppBδ  in ( )mT 169=⊥

ppBδ  v primeru magnetnega polja vzdolž in pravokotno na 
kristalno os c, ni mogoče pojasniti ne z magnetno dipolarno interakcijo med spini niti z 
hiperfino interakcijo na mestih Cu2+, ampak je zanjo odgovorna anizotropija izmenjalne 
interakcije [94, 96]. Simetrični del te interakcije, ki je velikosti ( ) K 1~ 2 ⋅≈⋅∆+ BkJgged , v 
skladu z enačbama (2) in (3) napoveduje širine reda velikosti mT 3≈ae

ppBδ , antisimetrični del 
K 1.2|| ⋅=′ BkD  pa velikosti mT 46≈ae

ppBδ . Tako je le antisimentrična interakcija 
Dzyaloshinsky-Moriya zmožna upravičiti eksperimentalne širine absorpcijskih spektrov ESR. 
 V limiti neskončne temperature ta interakcija vodi do anizotropije širine spektrov, ki jo 
določata drugi in četrti moment. V laboratorijskem sistemu z osjo z vzdolž zunanjega 
magnetnega polja imata momenta obliko [44] 
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vektorjev DM v kristalnem sistemu je mogoč s transformacijo 
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Ob upoštevanju Cépasovega predloga o obliki vzorca vektorjev interakcije DM (enačba (16)), ki 
ga povzema slika 4.8a, sta oba momenta resonančne črte oblike 
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kar določa kotno odvisnost širine spektrov ESR 
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Primerjava te napovedi z eksperimentalno anizotropijo širine pri 295 K in 525 K (glej sliko 4.7) 
nazorno pokaže na neustreznost modela, saj izmerjeno odvisnost od polarnega kota θ 
zadovoljivo popiše šele odvisnost oblike ( )θδ 2cos1++= BABpp  s parametri ( )mT 58.47=A , 

( )mT 58.21=B  pri 295 K in ( )mT 51.54=A , ( )mT 50.22=B  pri 525 K. Parameter A, ki ostane 
tudi v primeru, ko odštejemo visokotemperaturni linearni prispevek širini, reda velikosti 
parametra B, pričakovanega po napovedi (20), priča o znatni dodatni anizotropiji v sistemu 
SrCu2(BO3)2 poleg predlagane sklopitve DM med drugimi najbližjimi sosedi z vektorji 
vzporednimi s kristalno osjo c, kot to povzema enačba (16). Simetrični del anizotropne 
izmenjalne interakcije kot drugi največji prispevek k magnetni anizotropiji ne more upravičiti 
tega odstopanja, saj je za več kot red velikosti premajhen in povzroča kotno odvisnost širine, ki 
je “napačne” oblike. Lastne smeri tenzorja te interakcije namreč sovpadajo z lastnimi smermi g-
tenzorja, ki ima tetragonalno simetrijo z osjo anizotropije usmerjeno vzdolž kristalne osi c, kot 
to prikazuje slika 4.4. Posledično je anizotropija širine črte ESR spet oblike ( )θ2cos1+  [98], 
torej ni v skladu z dodatnim konstantnim prispevkom A. 
 Rešitev te dileme ponuja natančnejša obravnava kristalne strukture. Ravnine CuBO3 pod 
temperaturo strukturnega faznega prehoda K 395=sT  namreč niso planarne, ampak so 
nagubane, kot to prikazuje slika 4.1a [90]. Posledično je na primer odpravljen center inverzije 
na sredini vsakega dimera in so neničelne intradimerne komponente vektorjev DM dovoljene. 
Do natančnega vzorca vektorjev interakcije DM, prikazanega na sliki 4.8b, je moč priti z 
upoštevanjem simetrijskih operacij prostorske grupe kristala in ustreznimi transformacijami 
vektorskega polja spinov ( ) ( )[ ] ( )rSrSrS 1−=→ OOO . Le-te razkrijejo, da so vsi vektorji DM 
določeni le s štirimi različnimi parametri. Intradimerna komponenta ⊥D  leži v kristalni ravnini 
ab in je vedno orientirana pravokotno na smer dimera spinov, ki ga povezuje, interdimerne 
komponente pa so v splošnem tri, torej poleg tiste vzporedne s smerjo kristalne anizotropije || D′  
še komponenti ηξ DD ′′  ,  znotraj kristalne ravnine ab. Ker je moč pričakovati, da je velikost 
intradimerne komponente večja od velikosti interdimernih ηξ DD ′′  ,  v ravnini ab, slednji najprej 
zanemarimo. Izračun drugega in četrtega momenta črte ESR določa kotno odvisnost širine 
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pri čemer sta konstanti JJJJJ ′−′+= 233 222
1  in 222

2 613 JJJ ′+= . Ujemanje modela in 
meritev je v tem primeru zadovoljivo, kot je to prikazano na sliki 4.9a, ocenjena parametra 
interakcije DM pa znašata ( )K 14.2|| ⋅=′ BkD  in ( )K 10.4⋅=⊥ BkD . Interdimerna sklopitev je 
tako zelo blizu oceni, dobljeni iz razcepa najnižje tripletne ekscitacije v visokih magnetnih 
poljih K 1.2|| ⋅=′ BkD . Pri tem je bila za izotropno izmenjalno interakcijo uporabljena 
uveljavljena vrednost K 85⋅= BkJ  [74], nedavne eksperimentalne [89, 91] in teoretične ocene 
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[76] pa napovedujejo tudi do 15% nižje vrednosti, kar bi še dodatno izboljšalo ujemanje našega 
eksperimenta z znanimi podatki. Nadaljnje upoštevanje komponent interdimerne interakcije v 
ravnini ab bistveno ne spremeni kakovosti ujemanja eksperimenta in teorije (glej sliko 4.9b), 
uvede pa negotovost v oceni parametra intradimerne sklopitve, saj je le-ta v končnem izrazu za 
širino sklopljen z na novo vpeljanima komponentama. Če za interdimerno komponento vektorja 
DM v ravnini ab upoštevamo oceno ||4.0 DD ′≈′⊥ , narejeno v limiti 0=′J  [99], je velikost 
sklopitve DM znotraj vsakega dimera podana z ( )K 56.3⋅=⊥ BkD , kar predstavlja prvo 
kvantitativno oceno te interakcije pri visokih temperaturah. Naša ocena je primerljiva z 
nedavnima napovedma velikosti te interakcije pri nizkih temperaturah. Na osnovi meritev 
specifične toplote v magnetnem polju je bila komponenta v ravnini ab intradimerne interakcije 
DM ocenjena na K 1.3=⊥D  [89], meritve NMR na jedrih 11B pa so dale napoved 

( )K 49.2⋅=⊥ BkD  [100]. 
 Primerjava izmerjene anizotropije širine spektrov ESR pri 295 K in 525 K vodi do 
ključnega vprašanja o izvoru detektirane interakcije DM. Sama oblika kotne odvisnosti je 
namreč nespremenjena pri obeh temperaturah, ki sta zaporedoma daleč pod in daleč nad 
temperaturo strukturnega faznega prehoda K 395=sT  v tej spojini. V statični sliki bi bilo moč 
pričakovati bistvene spremembe, saj je v visokotemperaturni fazi dovoljena samo 
komponenta || D′  interakcije DM. Verjetno razlago tega nesoglasja nam ponuja dinamična slika, 
kjer nihanja kristalne mreže začasno podrejo lokalno simetrijo in omogočajo končne prej 
simetrijsko prepovedane komponente interakcije DM [92, 93]. Takšen mehanizem vpliva na 
spektre ESR v primeru, če so v to vpletena mehka optična fononska nihanja (“soft optical 
modes”) s karakterističnimi fononskimi frekvencami pod tipično izmenjalno frekvenco razpada 
spinskih korelacij v sistemu hJe ≈ω . Nadalje morajo biti povprečni kvadrati odmikov ionov 
od ravnovesnih leg znatni, to je primerljivi s statičnimi odmiki v nizkotemperaturni fazi. 
 Prisotnost ustreznega optičnega nihajnega načina je bila ugotovljena z eksperimenti 
ramanskega sipanja [90, 101]. Frekvenca nihanja usteza velikosti izmenjalne frekvence pri 15 
K, kar se da razbrati iz energije ramanskega premika 62 cm-1 pri tej temperaturi. Z višanjem 
temperature pa se ta premik znatno zniža in doseže vrednost 18 cm-1 nekaj pod temperaturo 
strukturnega prehoda, ko črta izgine v signalu ozadja (glej sliko 4.10). Omenjeno nihanje 
ustreza nihanju v fazi skoraj vseh ionov znotraj osnovne celice (razen Sr2+), preferenčno vzdolž 
kristalne osi c in kot tako spominja na statično deformacijo ravnin v nizkotemperaturni fazi. 
Nadalje so tudi sami odmiki precejšnji, saj znašajo na primer za bakrove ione 0.25Å in 0.33Å za 
kisikove ione O(1), ki bakrove ione povezujejo, kar je primerljivo s statičnimi odmiki pri 
temperaturi 100 K. Ker gre dodatno še za nihanje v centru Brillouinove cone, se s stališča 
meritev ESR povzročene dinamične distorzije bistveno ne razlikujejo od statičnih v 
nizkotemperaturni fazi. Izvor intradimerne interakcije DM gre tako iskati v kombiniranem 
efektu obeh mehanizmov, ocenjen parameter pa predstavlja časovno povprečeno vrednost. 
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 Temperaturno odvisnost širine spektrov ESR nad sobno temperaturo lahko, kot je že bilo 
omenjeno, pripišemo sklopitvi spinskega sistema s fononi. Preostali dve možnosti razlage 
opaženega linearnega spreminjanja širine črte s temperaturo, to je spinsko difuzijo [97] in vpliv 
statičnih spinskih korelacij [102], lahko namreč zanemarimo. O nepomembnosti prvega 
mehanizma govori Lorentzova oblika absorpcijskih spektrov, drugega pa ovrže regularen 
linearen porast v zelo širokem temperaturnem območju med 3.5J in 7J (glej sliko 4.11a) in 
kotno neodvisen naklon tega porasta ( ( )mT/K 1035.0|| =k , ( )mT/K 1033.0=⊥k ). Omenjeno 
razširitev lahko pripišemo efektu končnega življenjskega časa vzbujenih nivojev, ki je posledica 
modulacije parametrov spinske hamiltonke zaradi mrežnih nihanj. Po mehanizmu predlaganem 
s strani Seehre et al. mrežna nihanja povzročijo fluktuacije interakcije Dzyaloshinsky-Moriya, 
ki nato inducira prehode med osnovnim in vzbujenimi stanji spinskega sistema [103]. V limiti 
nesklopljenih dimerov je ta dodatna razširitev črte podana z izrazom 
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kjer 1=Z  predstavlja število neodvisnih parov, 10=Rλ , pri čemer je R razdalja med spinoma 
znotraj dimera in rrJ λ−=dd  [104], gostota znaša 3kg/dm 1.4=ρ  [105], komplicirano kotno 
povprečje zvočnih hitrosti pa lahko ocenimo s pomočjo povprečne hitrosti c = 4600 m/s [106]. 
V primeru zgoraj ocenjene intradimerne interakcije DM K 6.3⋅== ⊥ BkDD  enačba (22) 
napove vrednost naklona grafa širine črte ESR v odvisnosti od temperature, 0.014 mT/K, kar je 
istega reda velikosti kot povprečen izmerjen naklon 0.034 mT/K. Teoretični in eksperimentalni 
rezultat se zadovoljivo ujemata, saj sta zgornja aproksimacija s povprečno hitrostjo in 
neupoštevanje spinskih korelacij med dimeri precej površni oceni. 
 Kot je bilo že omenjeno v uvodu v to poglavje, drug potencialno zanimiv problem 
predstavlja dopiranje SrCu2(BO3)2 sistema z elektroni oziroma vrzelmi [33, 34] zaradi formalne 
podobnosti kristalne strukture tega sistema s strukturami visokotemperaturnih superprevodnikov 
[24]. Po drugi strani lahko vnos nečistoč v sistem tudi bistveno vpliva na spinsko energijsko 
režo in v splošnem na energije nizkoležečih magnetnih ekscitacij, še posebej ker sistem leži 
blizu kvantne meje med različnimi osnovnimi stanji [107]. Zaradi teh razlogov smo se sami 
lotili različnih pristopov dopiranja [108], ki pa so se v pretežni meri končali kot neuspešni. V 
splošnem so namreč botrovali fazni nehomogenosti vzorcev (glej sliko 4.13). 
 Potencialno pomembni se zdijo le rezultati dopiranja z metodo raztapljanja alkalnih kovin 
v tekočem amoniaku [109]. Le te disociirajo na ione kovin in proste elektrone [110], zato lažje 
prodirajo v določeno kristalno strukturo. Sami smo poizkusili z interkalacijo litijevih ionov v 
strukturo SrCu2(BO3)2, vzporeden vnos elektronov pa naj bi služil za kompenzacijo električnega 
naboja. Elektroni naj bi po predvidevanjih vplivali predvsem na valenco bakrovih ionov v 
spojini, na kar je implicirala tudi sprememba barve vzorcev iz začetne modre v temno sivo. 
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Natančne strukturne analize s pomočjo rentgenskega sipanja (glej sliko 4.14) so pokazale, da 
sam vnos litijevih ionov, če je do njega sploh prišlo, zaznavno ne spremeni kristalne strukture 
spojine, manjši premiki ramanskih absorpcijskih črt, pa implicirano na možne rahle spremembe 
v normalnih nihanjih kristalne mreže. Tudi sam magnetni karakter spojine z interkaliranim 
litijem ni bistveno spremenjen od starševske spojine. Tako na primer magnetna susceptibilnost 
še vedno kaže na aktivacijsko obnašanje in nespremenjeno vrednost spinske energijske reže, 
sama velikost izmerjene susceptibilnosti pa je v dopiranih vzorcih nekoliko manjša (glej sliko 
4.15a). Podobno obnašanje je bilo opaženo v primeru dopiranja spojine SrCu2(BO3)2 na mestu 
stroncija z barijem in kalcijev, ki sta oba vodila do zmanjšane vrednosti susceptibilnosti, čeprav 
je Ca2+ lažji in Ba2+ težji ion od iona Sr2+ [111]. 
 Vendar pa so prisotnost litija v vzorcu nedvomno potrdile meritve NMR. Primerjava 
intenzitete signala NMR na jedrih 7Li v polju 8.93 T v interkaliranem vzorcu LixSrCu2(BO3)2 in 
referenčni raztopini Li2CO3 so namreč pokazale, da je molarni delež litija ( )14.0=x , kar je 
približno za faktor dva pod nominalno določenim stohiometrijskim razmerjem mola litija na 
mol starševske spojine. Širine izmerjenih spektrov so relativno velike, kot to prikazuje slika 
4.16. Še več, tudi temperaturni potek tega parametra in njegova linearna odvisnost od amplitude 
zunanjega statičnega polja (slika 4.17) implicirata, da je dominantna magnetna anizotropija na 
mestu 7Li jeder elektronskega izvora. O sklopitvi sistema litijevih jeder s sistemom 
paramagnetnih elektronov na ionih Cu2+ dodatno priča aktivacijsko obnašanje spinsko-mrežne 
relaksacije, prikazano na sliki 4.18. Sama velikost spinsko-mrežnega relaksacijskega časa in 
širine resonančnih spektrov služi tudi za oceno povprečne razdalje med litijevimi jedri in 
bakrovimi ioni Å7.2=r , torej bi se morala litijeva jedra nahajati znotraj kristalne strukture. 
Majhni premiki resonančne črte od Larmorjeve frekvence reda velikosti nekaj ppm pričajo, da 
je litij v spojini v obliki ionov Li+, saj bi litijevi skupki povzročili znatno večje premike, ki v 
primeru litijeve kovine znašajo 240 ppm [112]. Po preprostem pričakovanju naj bi elektroni, 
intenkalirani v starševsko spojino poleg ionov Li+, vplivali na spremembo valence bakrovih 
ionov iz Cu2+ v Cu+, ki so nemagnetni. Vendar pa bi uničenje singletnih parov v osnovnem 
stanju moralo vplivati tudi na velikost spinske energijske reže. Zato ni izključena možnost, da je 
med reakcijo interkalacije litij reagiral z neznano snovjo iz okolice zaradi nepopolnega tesnjenja 
eksperimentalne aparature, čeprav bi potem takšne strukture še bistveno težje “neopazno” 
prodirale v kristalno strukturo spojine SrCu2(BO3)2. 
 
 
4 Zaključne opombe 

 
Predmet raziskave te disertacije je vpliv magnetne anizotropije in dopiranja na magnetizem 
dveh nedavno sintetiziranih sistemov s spinsko energijsko režo, to je enodimenzionalnega 
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Haldaneovega sistema PbNi2V2O8 in dvodimenzionalnega sistema ortogonalnih dimerov 
SrCu2(BO3)2. V obeh spojinah se očitno izraža kvantna mehanika na makroskopskem nivoju, saj 
sta pripadajoči osnovni stanji obeh spinskih sistemov singletne narave. Rezultati naših 
magnetno-resonančnih meritev na sistemu SrNi2V2O8, ki je spojini PbNi2V2O8 izomorfen, so 
pokazali podobno sliko o prisotnosti spinske energijske reže, čeprav je prej prevladovalo 
mnenje, da v tem sistemu prihaja do magnetnega urejanja pri nizkih temperaturah.  
 Magnetna anizotropija je v sistemih PbNi2V2O8 in SrCu2(BO3)2 znatna in bistveno vpliva 
na njune magnetne lastnosti, zato je njeno podrobno poznavanje ključno za razumevanje 
magnetizma v teh sistemih. S pomočjo magnetno-resonančnih meritev smo uspeli nadgraditi 
uveljavljeni sliki o dominantnih prispevkih magnetne anizotropije v obeh spojinah. V primeru 
Haldaneovega sistema PbNi2V2O8 je tako prevladovalo prepričanje o anizotropiji na 
posameznem mestu uniaksialne oblike kot vodilnem členu magnetne anizotropije. Tako naše 
meritve ESR kot tudi simetrijski argumenti na podlagi natančnejšega poznavanja kristalne 
strukture pa so pokazali na precej bolj zapleteno strukturo te interakcije in na dodatno 
nezanemarljivo interakcijo Dzyaloshinsky-Moriya. Slednji prispevek je bil tudi kvantitativno 
ovrednoten, vendar pa kritičen test predlaganega modela zaenkrat onemogoča praškasta narava 
razpoložljivih vzorcev. 
 Po drugi strani pa je ravno kristalna narava vzorcev spojine SrCu2(BO3)2 omogočila 
natančno določitev oblike magnetne anizotropije v tem sistemu. Analiza meritev elektronske 
spinske resonance je tako pokazala, da so poleg prej predlaganih interdimernih komponent 
interakcija Dzyaloshinsky-Moriya pomembne tudi intradimerne interakcije, saj je njihova 
velikost istega reda velikosti. Vzorec vektorjev Dzyaloshinsky-Moriya, ki je bil narejen na 
podlagi simetrijskih operacij prostorske grupe pripadajoče kristalne strukture, je tako v skladu z 
meritvami. Nadalje je eksperiment razkril tudi pomen spinsko-mrežne sklopitve na spinsko 
dinamiko v tem sistemu. Interakcija Dzyaloshinsky-Moriya je namreč tudi dinamičnega izvora, 
saj sledi iz podrtja lokalne simetrije kot posledica fononskih nihanj. 
 S stališča drugega izmed zastavljenih vprašanj v tej disertaciji, to je vprašanja vpliva 
dopiranja z nečistočami na magnetizem obeh spinskih sistemov, sta se preučevana sistema 
izkazala kot popolni nasprotji. V primeru spojine PbNi2V2O8 že zelo majhna koncentracija 
nečistoč podre spinsko singletno osnovno stanje in povzroči magnetno urejanje pri nizkih 
temperaturah neglede na spinsko naravo dopantov, kar je v skladu s sliko valenčnih vezi. Sama 
spinska narava pa bistveno vpliva na razvoj spinskih korelacij v večjih magnetnih poljih 
velikosti nekaj tesla. Kot kaže namreč ta zadušijo razvoj antiferomagnetnih korelacij v primeru 
dopiranja z nemagnetnimi ioni Mg2+, ne pa tudi v primeru magnetnih ionov Co2+.  
 Po drugi strani je dopiranje sistema SrCu2(BO3)2 precej težavnejša naloga, saj se zdi, da 
samo metoda interkalacije ionov alkalijske kovine v kristalno strukturo starševske spojine kaže 
konkretnejše rezultate. Interkalacija litija bi tako morala povzročiti vnos elektronov v bakrove 



 
165

ravnine, vendar pa je ta rezultat vprašljiv. Spinska energijska reža se namreč izkaže za zelo 
odporno proti takšni perturbaciji, kar priča o singletni naravi osnovnega stanja kljub znatni 
količini interkaliranega litija. Na nek način ta rezultat spominja na primer spinskih lestev, 
dopiranih z vrzelmi v manjših koncentracijah, kjer se izkažejo podobne tendence o ohranitvi 
spinske energijske reže. Dopiranje z vrzelmi pa bi moral biti tudi eden izmed najpomembnejših 
ciljev v nadaljnjem raziskovanju dvodimenzionalnega spinskega sistema SrCu2(BO3)2, saj bi 
lahko vodilo do superprevodnosti. V tem primeru bi se natančno poznavanje spinske hamiltonke 
tega sistema in njena možna povezanost s superprevodnostjo lahko izkazala kot mejnik v 
razumevanju tega pojava.  
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