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ABSTRACT 

The impact of magnetic frustration on the magnetic ground state of two-dimensional systems of magnetic 

clusters with triangular geometry, as well as magnetic and electric properties of these systems is explored in 

this Thesis. The emphasis is on compounds, which include p-element cations that are in the oxidation state 

where they have lone pair electrons, in particular Te4+ in two recently synthesized FeTe2O5Br and 

Ni5(TeO3)4Br2 systems. Both systems have layered monoclinic structures build of magnetic clusters composed 

of two triangles, i.e., edge sharing in iron while face sharing in nickel system.  

Bulk magnetic response and magnetic transition temperatures were studied by low-field magnetic 

susceptibility and high-field magnetic torque and magnetization measurements. Low-temperature magnetic 

ground state and temperature dependence of the correlation length above the Néel transition were 

determined by neutron scattering experiments, while inelastic scattering was used to study spin waves. 

Temperature dependence of the spin correlation functions, magnetic anisotropies, exchange interactions, 

spin-gap and magnon spectra were investigated via local probe techniques, i.e., electron and nuclear 

magnetic, and nuclear quadrupolar resonance. Additionally, muon spin relaxation was measured to probe 

evolution of short- and long-range ordered phases. Finally, dielectric measurements were employed to study 

ferroelectric properties. 

This way the magnetoelectric multiferroic state with coexisting electric polarization and incommensurate 

amplitude modulated magnetic structure has been discovered in the FeTe2O5Br system. The explanation, 

derived using representation theory, is given by a novel mechanism based on exchange-striction involving 

sliding of the amplitude modulated magnetic waves, consequently inducing off-centre distortions of the 

superexchange bridging Te4+ ions and thus enforcing polarization of Te4+ lone pair electrons. Finally this 

results in macroscopic electric polarization, which can be suppressed when magnetic field of 4 T is applied 

along the incommensurate direction. Just above the multiferroic phase, additional high-temperature 

incommensurate magnetic phase, showing no trace of ferroelectricity, was found. Moreover, short-range 

ordering effects persist far above the Néel temperature indicating strong magnetic frustration and low-

dimensionality of the FeTe2O5Br system. 

On the other hand, magnetic ground state of the Ni5(TeO3)4Br2 system was found to be planar, with canted 

magnetic moments. It preserves the inversion symmetry of the crystal lattice and thereby excludes the 

possibility for macroscopic electric polarization. The relatively simple magnetic structure is ascribed to the 

fact that the magnetic anisotropies, determined from fits of antiferromagnetic resonance to the molecular 

filed model and Kubo-Tomita theory, are strong, thus favouring long-range magnetic ordering over 

geometrical frustration. When magnetic field was applied perpendicular to the crystal layers, spin-flop like 

transition was observed at around 11 T, which is according to the molecular field calculations followed by a 

second transition at 24 T. The estimated high-field magnetic structure however breaks the inversion 

symmetry and thus open the possibility for ferroelectric order. 

 

Keywords: low-dimensional, triangular topology, frustration, magnetoelectric, magneto-striction, phase 

diagram, spin flop, neutron diffraction, dielectric constant, magnetic resonance, quadrupolar resonance, 

magnetic anisotropy 

PACS: 75.25.+z, 75.80.+q, 77.80.-e, 77.84.-s, 75.50.Ee, 81.30.Bx, 76.50.+g
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POVZETEK 

V tej disertaciji je predstavljen vpliv magnetne frustracije na osnovna magnetna stanja dvodimenzionalnih 

sistemov magnetnih skupkov s trikotno geometrijo, kakor tudi njihove magnetne in električne lastnosti. 

Poudarek je na spojinah, ki vsebujejo katione v oksidacijskem stanju, kjer imajo nevezne elektronske pare. 

Posvetili smo se predvsem Te4+ kationom v dveh nedavno sintetiziranih sistemih – FeTe2O5Br in 

Ni5(TeO3)4Br2. Oba omenjena sistema imata plastoviti monoklinski strukturi zgrajeni iz magnetnih skupkov 

sestavljenih iz dveh trikotnikov, ki si v Fe sistemu delita celo stranico v Ni sistemu pa zgolj vogal. 

Makroskopski magnetni odziv kot tudi temperature magnetnih prehodov smo preučevali z meritvami 

magnetne susceptibilnosti v nizkem magnetnem polju in meritvami magnetnega navora in magnetizacije v 

visokih poljih. Nizkotemperaturno osnovno magnetno stanje in temperaturno odvisnost magnetnih korelacij 

nad magnetnim prehodom smo določili z elastičnim nevtronskim sipanjem, medtem ko smo z meritvami 

neelastičnega sipanja raziskovali spinske valove. Temperaturno odvisnost spinskih korelacijskih funkcij, 

magnetnih anizotropij, izmenjalnih interakcij, spinske vrzeli in magnonskega spektra pa smo študirali z 

lokalnimi tehnikami, t.j. elektronsko in jedrsko magnetno ter jedrsko kvadrupolno resonanco. Dodatno smo 

za preučevanje razvoja magnetnega reda kratkega in dolgega dosega uporabili še muonsko spinsko 

relaksacijo. Na koncu smo opravili še dielektrične meritve, s katerimi smo spremljali feroelektrične lastnosti 

vzorcev 

Na ta način smo v FeT2O5Br sistemu odkrili magnetoelektrično multiferroično stanje, kjer soobstajata 

električna polarizacija in inkomenzurabilni amplitudno moduliran magnetni red. Razlaga, izpeljana s pomočjo 

reprezentacijske analize, je podana z novim mehanizmom, ki temelji na izmenjalni-skrčitvi in vključuje 

drsenje amplitudno moduliranih magnetnih valov. Slednje privede do izven-centričnih deformacij 

superizmenjalnih mostov, ki vsebujejo Te4+ katione, in s tem vsili polarizacijo Te4+ neveznih elektronskih 

parov. Končni rezultat je makroskopska električna polarizacija, ki pa jo v polju 4 T vzdolž inkomenzurabilne 

osi lahko izničimo. Tik nad multiferroično fazo smo opazili tudi visokotemperaturno inkomenzurabilno fazo, 

ki pa ne kaže ferroelektričnih lastnosti. Dodatno smo opazili magnetne efekte reda kratkega dosega že visoko 

nad temperaturo magnetnega prehoda, kar odraža tako močno frustracijo kot tudi nizkodimenzionalnost 

FeT2O5Br sistema. 

Po drugi strani so magnetni momenti v osnovnem stanju Ni5(TeO3)4Br2 sistema urejeni v ravnini, znotraj 

katere pa so različno zasukani. To stanje ohranja simetrijo inverzije kristalne mreže in s tem izniči možnost 

razvoja makroskopske električne polarizacije. Relativno preprosto magnetno strukturo pripisujemo dejstvu, 

da so magnetne anizotropije, določene na podlagi opisa antiferromagnetne resonance z modelom 

molekularnega polja in Kubo-Tomita teorije, močne in dajejo prednost magnetnemu redu dolgega dosega 

pred geometrijsko frustracijo. Ko smo dodali polje pravokotno na kristalne plasti, smo opazili blag spinski 

preskok pri 11 T, temu pa naj bi po izračunih molekularnega polja sledil še drugi prehod pri 24 T. 

Predvidena struktura te faze (v visokem polju) zlomi simetrijo inverzije in s tem odpre možnost za razvoj 

ferroelektrične ureditve. 

 

Ključne besede: nizkodimenzionalen, trikotna ureditev, frustracija, izmenjalna-skrčitev, fazni diagram, spinski 

preskok, nevtronsko sipanje, dielektrična konstanta, magnetna resonanca, kvadrupolna resonanca, 

magnetna anizotropija 
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1 Introduction 
In the last few decades, low-dimensional spin systems have been intensively studied, as they often exhibit 

novel unusual magnetic ground states, which can provoke new fascinating magnetic phenomena, e.g., spin 

liquid phases in Haldane chains (1), (2). This is even more pronounced, when competing spin-spin 

interactions are introduced, imposing so called magnetic frustration. In fact, magnetic frustration is believed 

to be strongly connected to the magnetic properties of the superconductivity in two-dimensional cuprates 

(3) and oxypnictides (4), strong magnetoelectric coupling in multiferroic materials (5), (6), (7), as well as an 

amazing degeneracy of the magnetic ground states, found in systems of spins arranged in Kagomé (8), (9), 

(10),  Shastry-Sutherland (11), (12) and some other triangular patterns. For all these systems it is typical that 

because of their special arrangement of the magnetic moments – mostly triangular – or because of the 

competition between different magnetic interactions, all of the exchange interactions in the system cannot 

be satisfied simultaneously (13). The resulting magnetic frustration can lead to a strong degeneration of the 

ground state and thereby promote the role of the quantum fluctuations. On the other hand, such systems 

are extremely sensitive to perturbations, e.g., magnetic anisotropies of the Dzyaloshinski-Moriya and 

antisymmetric exchange interaction type, which can lift degeneration, open a gap in the excitation spectrum, 

suppress quantum fluctuations, and stabilize a long-range magnetically ordered state. As a result, physical 

realizations of frustrated low-dimensional magnetic systems are usually very complex and have intriguing 

magnetic properties. Therefore, knowledge about such systems significantly expands the asset of physical 

means, required to push forward the technological boundaries. However, since many of the encountered 

phenomena have not yet been completely understood, there is an intensive ongoing search for novel model 

systems, which will put the existing theories to the test.  

Until recently, most magnetically frustrated physical systems were identified based on topological 

considerations from structural data bases, i.e., searching for so called geometrical frustration, while the 

attempts to systematically design novel systems via new synthesis concepts were surprisingly rare. However, 

during the past few years, novel synthesis approaches for finding new low-dimensional spin frustrated 

inorganic compounds has been developed. One of the synthesis strategies that has proved to be very 

successful, is the use of so-called lone pair cations. For lone pair cations it has already been demonstrated by 

Galy et al. (14) that the effective volume of the lone pair electrons is approximately the same as the volume 

of an O2- ion. Consequently, these elements, when mixed with a transition metal in the presence of halogen 

ions, can be regarded as “chemical scissors” (15), used for reducing the number of the superexchange 

pathways between the magnetic ions and consequently prefer to form a low-dimensional structure. 

The actual synthesis concept (16) is based on forming oxohalides involving p-element cations that are in the 

oxidation state where they have stereochemically active lone pair electrons (e.g., Te4+, Se4+, As3+, and Sb3+). 

The presence of stereochemically active lone pair electrons will allow for asymmetric or one-sided 

coordination around the lone pair cation. In addition also such a strong Lewis acid (e.g., Te4+) preferably only 

forms bonds to oxygen while the transition metal cations bond to both oxygen and halides in an oxohalide 

environment. As a result, both the stereochemically active lone pair and the halide ions will function as 

terminating species opening up the structures and increase the possibilities for low-dimensional 

arrangements. This synthesis concept has been successfully applied in search for new compounds with 

reduced dimensionality in the arrangement of late transition metal cations, as several such compounds have 

been found; for example, Cu2Te2O5X2 (X = Cl, Br) (17), CuSb2O3Br (18), and Cu4Te5O12Cl4 (19). 

Remarkably, lone pair electrons were also found to be carriers of the electric polarization in the numerous 

ferroelectric materials, for instance Bi3+ in the BiMnO3 (20). In fact, the general belief is that since lone pair 
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electrons are stereochemically active, they can be easily polarised and are thus considered as the primary 

driving force behind the off-centre structural distortions, essential for the formation of electric polarization 

in these materials. Thus they seem to be convenient candidates to induce both magnetic frustration as well 

as electric polarization, which might result in coupling between the magnetic and electric orders. 

Practical realization of coexisting magnetic and ferroelectric order was found in so called multiferroic 

materials (21), (22), (23), (24), (25). In case of strong magnetoelectric coupling, ferroelectric polarisation can 

be switched by the magnetic field (5), (6) or conversely magnetic order can be controlled by the electric field 

(7), thus holding a great promise for future devices in the field of spintronics and data storage (26), (27). The 

observed behaviour was typically encountered in complex magnetic structures with broken inversion 

symmetry, i.e., in systems in which ferroelectric polarisation develops simultaneously with incommensurate 

spiral magnetic order (28). Actually, it is generally accepted that the spiral magnetic order, which removes a 

centre of inversion and thereby allowing the ferroelectric order, is essential for the occurrence of a nonlinear 

magnetoelectric effect in perovskite-type manganites RMnO3 (29) (R-rare earth element) and in Ni3V2O8 

oxide (30). In spite of that, in the extensive search for novel magnetoelectric multiferroics, lone pair 

electrons have been typically considered solely as a source of electric polarization, and not as a tool for 

forming frustrated low-dimensional magnetic geometries, which might lead to complex magnetic structures 

with broken inversion symmetry. Magnetically frustrated materials possessing lone-pair electrons thus, in 

view of magnetoelectric coupling research, represent almost completely unexplored field.  

The main question, which motivated the work presented in this thesis, is hence, what is the impact of 

magnetic frustration on the magnetic ground state of two-dimensional systems of magnetic clusters with 

triangular geometry, exploration of their magnetic and electric properties with the aim to understand how 

different degrees of freedom, such as spin, charge, or orbital, order and couple in reduced dimensions with 

topological frustration. During our research, we also paid attention to interesting new phenomena, which 

might be at some point applicable for a general use. Our investigation is dedicated to the systems containing 

the p-element cations that are in the oxidation state where they have stereochemically active lone pair 

electrons, in particular Te4+. The presence of Te4+ lone pair electrons is responsible for reduced number of 

superexchange pathways between the magnetic ions and consequently leads to low-dimensional crystal 

structures.  Additionally, we hope that the presence of lone pair electrons will promote the affinity of these 

systems to form off-centre crystal distortions, which might eventually lead to macroscopic electric 

polarization. 

More precisely, the goal of this work is to explore the influence of Te4+ lone pair electrons in recently 

synthesized FeTe2O5Br (31) and Ni5(TeO3)4Br2 (15) systems. These systems were derived according to the 

above presented synthesis concept, using Te4+ lone pair electrons as so called “chemical scissors”. Both 

systems have a layered monoclinic structure build of magnetic clusters. In the first case, Fe3+ (S = 5/2) ions 

are coupled via oxygen bridges in geometrically frustrated [Fe4O16] clusters. In the second case, however, the 

basic building blocks are [Ni5O17Br2] units, with Ni2+ (S = 1) being the magnetic ion. In both examples clusters 

consist of triangularly arranged magnetic ions, while the expected superexchange interaction is 

antiferromagentic, as proposed in the first reports (31), (15) relaying on the magnetic susceptibility 

measurements. Magnetic ordering is thus expected on different levels: within the clusters, within the layers, 

and finally three-dimensional magnetic order below 11 K and 29 K for FeTe2O5Br (31) and Ni5(TeO3)4Br2 (15) 

respectively. Finally, we note that in FeTe2O5Br system all superexchange interactions between Fe3+ (S = 5/2) 

ions involve Te4+ ions, having lone pair electrons, thus forming a potential bridge between magnetic and 

electric degrees of freedom.  
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Here we briefly summarize our main experimental findings. The most important result is that the FeTe2O5Br 

system was found to be multiferroic, i.e., in this system at low temperatures macroscopic electric 

polarization is induced by the incommensurate amplitude modulated magnetic structure (32). The 

investigation of the crystal structure implies that the emergence of electric polarization is accompanied by 

the shift of the Te4+ lone pair electrons, corroborating with the hypothesis stating that electric polarization 

should result from off-centre distortions driven by lone pair electrons. The novel magnetoelectric coupling 

mechanism involving exchange-striction has been proposed, which is based on the sliding of the 

neighbouring incommensurate amplitude modulation waves, thereby breaking the inversion symmetry of 

the crystal lattice and thus opening the possibility for electric polarization. Further, we found that low-

temperature multiferroic phase is actually preceded by another high-temperature incommensurate 

magnetic phase. Since in this phase no trace of ferroelectricity has been detected, we assume that inversion 

symmetry is still present. Moreover, when magnetic field is applied along the incommensurate direction, 

high-temperature phase vanishes around 4 T as well as electric polarization in the low-temperature phase 

(33), giving a direct proof of strong magnetoelectric coupling. In other words, we found that electric 

polarization in FeTe2O5Br system can be shut down with the applied magnetic field, which is of great interest 

from a view of novel spintronic devices. The FeTe2O5Br system thus represents a novel class of multiferoic 

compounds and expands strong magnetoelectric coupling, so far found only in helicoidal/spiral magnetic 

structures, also to amplitude modulated structures. This finding dramatically expands the number of 

candidates for room-temperature magnetoelectric effect, which is essential for large scale technological 

applications. 

On the other hand, the investigation of the Ni5(TeO3)4Br2 system reveals that magnetic structure of this 

system is less complex and that it preserves the inversion symmetry of the crystal lattice. Hence the 

possibility of macroscopic polarization is excluded. Fits of the field and angular dependence of 

antiferromagnetic resonance to the molecular field model imply that lower level of magnetic frustration and 

consequently simpler magnetic structure are results of strong magnetic anisotropies. In addition, applied 

magnetic field, perpendicular to the crystal layers, was found to induce spin-flop like transition at around 11 

T. Furthermore, according to the molecular field calculations, assuming the estimated magnetic anisotropies, 

another transition is predicted at 24 T. The estimated magnetic structure of this phase, however, breaks 

the inversion symmetry, thus opening the possibility for ferroelectric order. 

In short, our study is in agreement with working hypothesis, stating that low-dimensional magnetic systems 

might indeed develop complex magnetic structures and that lone pair electrons in such systems are likely to 

carry electric polarization. Thus it encourages us to pursue the search for interesting magnetic phenomena in 

the field of low-dimensional geometrically frustrated magnetic materials, possessing lone pair electrons.  
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2 Theory  

2.1 Origin of magnetism 

2.1.1 Historical overview of research of magnetism 

Earliest reports about magnetism came from Aristotle, who attributed the first scientific discussion of 

magnetism to Thales (approximately 625 to 545 BC) (34). In China, the first mentioning of magnetism 

originates from fourth century BC (Book of the Devil Valley Master) (35). Concerning the actual use of 

magnetism, the ancient Chinese scientist Shen Kuo (1031-1095) was the first person to write about the 

magnetic needle compass, and by the 12th century the Chinese were known to use the lodestone compass 

for navigation. In 1269 Peter Peregrinus de Maricourt wrote the Epistola de magnete, the first extant treatise 

describing the properties of magnets, while in 1600 William Gilbert published his De Magnete, 

Magneticisque Corporibus, et de Magno Magnete Tellure (On the Magnet and Magnetic Bodies, and on the 

Great Magnet the Earth). In this work he concluded from his experiments that the Earth was itself magnetic 

and that this was the reason compasses pointed north. 

An understanding of the relationship between electricity and magnetism began in 1819 with work by Hans 

Christian Oersted, a professor at the University of Copenhagen, who discovered that an electric current 

could influence a compass needle. This landmark experiment is today known as Oersted's Experiment. 

Several other experiments soon followed, with André-Marie Ampère, Carl Friedrich Gauss, Michael Faraday, 

and others finding further links between magnetism and electricity. James Clerk Maxwell synthesized and 

expanded these insights into Maxwell's equations, unifying electricity, magnetism, and optics into the field of 

electromagnetism. In 1905, Einstein used these laws as an initial condition in his theory of special relativity 

(36), requiring that the laws held true in all inertial reference frames. 

Electromagnetism has continued to develop into the twentieth century, being incorporated into the more 

fundamental theories of gauge theory, quantum electrodynamics, electroweak theory, and finally the 

standard model. The microscopic theory of magnetism, on the other hand, had to wait for the advent of 

quantum mechanics in early twentieth century. 

2.1.2 Microscopic theory of magnetism 

Magnetism, at its root, arises from two sources. First, electric currents, or more generally moving electric 

charges, create magnetic fields. In classical electromagnetism, therefore, magnetic moment is described as a 

current loop. If there is a current   around area       then the magnetic moment     is given by (37)  

           (2.1)  

and the magnetic moment has the units of Am2. The length of the vector     is equal to the area of the loop 

while its direction is normal to the loop and in a sense determined by the direction of the current around the 

loop. The second source lays within the elementary particles themselves, i.e., many particles have nonzero 

"intrinsic" (or "spin") magnetic moments, just as many particles, by their nature, have a certain charge. 

In magnetic materials the most important source of magnetic phenomena are the electrons. More precisely, 

magnetism originates from their orbital angular motion around the nucleus (   ), as well as their intrinsic 

magnetic moment (  ). Together, these two contributions sum up into a magnetic moment 

                 (2.2)  
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Here g0 = 2.0023 is the free-electron g-factor and B = 9.274 × 10-24 Am2 is the Bohr magneton, defined as 

      , where e = −1.602 × 10−19 As is the electron charge,   = 1.055 × 10−34 Js is the Planck constant 

divided by 2 and me = 9.109 × 10–31 kg is the electron mass. We note that the expression for    changes 

when magnetic ion is situated in some specific surrounding, for instance, a crystal lattice. The other potential 

sources of magnetism are much less important, for example, the nuclear magnetic moments of the nuclei in 

the material are typically thousands of times smaller than the electrons' magnetic moments.  

Normally, the countless electrons in a material are arranged such that their magnetic moments (both orbital 

and intrinsic) cancel out. This is due, to some extent, to electrons combining into pairs with opposite intrinsic 

magnetic moments, as a result of the Pauli Exclusion Principle, or combining into "filled subshells" with zero 

net orbital motion. In both cases, the electron arrangement is such that it exactly cancels the magnetic 

moments from each electron. However, when d-orbitals (transition metal ions) or f-orbitals (rare-earth ions) 

are only partly filled, individual atoms can carry a non-zero magnetic moment. 

2.1.3 Magnetic moments of transition metal ions 

To understand the occurrence of the magnetic moment in transition metal ions, let us recall how d-orbitals 

are filled with electrons. It is very common that d-orbitals are divided into two classes: three t2g orbitals, 

which point between x, y, and z axes (Figure 1a) and two eg orbitals, which point along the axes (Figure 1b). 

In crystal, the degeneracy of d-orbitals will be removed by an electric field derived from neighbouring atoms 

– the so called crystal field (CF) (37). 

 

Figure 1: Five d-orbitals: (a) three t2g and (b) two eg orbitals. 

Here are some basic concepts. Suppose that transition metal ion sits in octahedral environment surrounded 

by neighbouring ions with p-orbitals, aligned along the x, y, and z axes (oxygen for instance). The overlap 

with p-orbital will be different for t2g and eg orbitals as evident from Figure 2 (37). 

 

Figure 2: Overlap of the d-orbitals (orange) with the p-orbitals (green): (a) t2g and (b) eg orbitals. 

Since the overlap is larger for eg orbitals, the corresponding increase in the electrostatic energy will be larger 

compared to t2g orbitals. As a result the fivefold degeneracy of d-orbitals is lifted by shifting t2g orbitals to 

lower and eg orbitals to higher energies (Figure 3a), i.e., the t2g and eg orbitals are split by the crystal field 

a b 

t2g eg 

a b 
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splitting. Consequently the filling of the d-orbitals goes as follows. In case of a small CF splitting, the 

electrons simply obey Hund’s rules, i.e., electrons will inhabit d-orbitals singly as far as possible (up to five). 

After that they will have to pair up – due to the Pauli exclusion principle only two electrons with the opposite 

spin can fill the same orbital (Figure 3b). The result is so called high-spin electronic configuration. On the 

other hand, if CF is strong, the splitting of the energy levels might be greater than the electronic repulsion. 

This results in the so called low-spin configuration. Now the electrons completely fill energetically favourable 

orbitals before they inhabit the less favourable ones (Figure 3c) (37). 

 

Figure 3: (a) Splitting of the energy levels of the d-orbitals in the octahedral environment and filing of the atomic d-orbitals in Fe
3+

 
3d

5
 with 5 d-electrons and Ni

2+
 3d

8
 with 8 d-electrons: (b) high-spin configuration and (c) low-spin configuration. Please note that 

for Ni
2+

, the crystal field splitting has no impact on electronic spin configuration. 

For instance, Fe3+ with 3d5 electronic configuration can be switched by CF between high-spin S = 5/2 and 

low-spin S = 1/2 configuration (Figure 3b,c). In contrast, Ni2+ ion has eight 3d electrons and therefore its S = 1 

spin configuration is independent of the CF. 

2.2 Spin Hamiltonian 

2.2.1 Interactions with local environment 

As already explained above, magnetic ion, which interacts with its surroundings, is in a state different from a 

free-ion state. In transition metals the interaction of the paramagnetic ion with its diamagnetic neighbours 

(CF) competes with the direct electrostatic interaction and splits the degenerated energy levels of a given 

orbital momentum of the ion,    , resulting in either high-spin or low-spin configuration. Moreover it often 

causes “quenching” of the expected values of this operator,       = 0 (38), which reduces the relative “size” of 

the spin-orbit (LS) coupling with respect to the crystal-field. Nevertheless, LS coupling written as             

for the states of orbital momentum,    , and spin momentum,   , (39) and the Zeeman energy, corresponding 

to the energy of the magnetic moment in the applied magnetic field     ,                     , can be 

considered as further perturbations. Here B is the Bohr magneton, g0 = 2.0023 is the free-electron g-factor 

a 
t 

e 

d 

Fe3+ 3d5 (S = 5/2) high-spin Ni2+ 3d8 (S = 1) 

b 

c 

Fe3+ 3d5 (S = 1/2) low-spin Ni2+ 3d8 (S = 1) 
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and  is the LS coupling constant. As a result, we get the effective Hamiltonian, which has for a non-

degenerate orbital ground state      split-off by the crystal field, the following form (40): 

                        
   

              
           (2.3)  

where  and  represent Cartesian components and the components of the tensor   are defined as 

      
                

     
 

  (2.4)  

Here the sum runs over all the excited states corresponding to a given shell. Since a spin wave-function is 

independent of an orbital wave function,    is left as an operator in equation 2.3. While the fact that the last 

term does not involve any spin component, allows us to exclude it from the forthcoming analysis. The first 

term in equation 2.3 introduces the anisotropic g-factor tensor with components                    , 

which define the compact form of the Zeeman interaction 

                (2.5)  

The second term is the origin of the single-ion anisotropy. It represents the anisotropy energy for the spin 

direction and can be written in the local frame, in which it takes a diagonal form, as 

          
        

    
    (2.6)  

The anisotropy parameters Dcf and Ecf are related to the principal values of the  -tensor as 

          
 

 
              (2.7)  

     
 

 
          

   (2.8)  

As a result, the terms in the effective Hamiltonian, equations 2.5 and 2.6, lift the degeneracy and define the 

so-called fine structure in the energy levels of magnetic ion. It is worth mentioning that the single-ion 

anisotropy Hamiltonian has no effect on systems with S = 1/2, as they do not have a degenerated ground 

state. 

In addition, the electrons are affected also by the interaction with the nuclear magnetic moments, which are 

approximately thousand times smaller than the electronic ones. Hence, in magnetically dense systems, this 

interaction is typically very small compared to the interactions with the external magnetic and crystal fields, 

associated with electron spin and the electrons' orbital angular momentum. Consequently this interaction is 

denoted as hyperfine interaction, resulting in energy shifts typically orders of magnitude smaller than the 

fine structure. In spite of a relatively weak effect of this electron-nuclear hyperfine interaction on the ionic 

energy levels, it can be very precisely determined from the nuclear magnetic resonance (NMR), as it will be 

presented latter in the Experimental section (page 28). Accordingly, detailed information about the 

electronic magnetic moments of the magnetic ions can be obtained from NMR. 

2.2.2 Interactions between magnetic moments 

Beside the interaction of the paramagnetic ion with its diamagnetic neighbours (CF) and nuclear magnetic 

moments, another type of interaction that a magnetic moment of the magnetic ion encounters in a crystal is 

an interaction with magnetic moments of other magnetic ions. Here we list the interactions, which can allow 

magnetic moments of magnetic ions in a solid to communicate and potentially evolve a long-range order.  
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2.2.2.1 Magnetic dipolar interaction 

The most obvious interaction to consider is the magnetic dipole-dipole interaction. The magnetic dipoles     

and     separated by    have energy equal to: 

  
  

             
 

  
                   (2.9)  

which depends on their separation as well as their mutual alignment. For instance the magnitude of this 

interaction for typical values encountered in solid magnetic materials, i = 1B and r = 1 Å, is approximately 

0B
2/4r3  10-23 J, which is equivalent to about 1 K in the temperature. Since lots of materials orders 

magnetically at much higher temperatures (some around 1000 K), the magnetic dipolar interaction is too 

weak to be considered as the leading interaction in most of the magnetic materials. 

2.2.2.2 Exchange interaction 

The main driving mechanism responsible for the occurrence of the long-range magnetic order is actually the 

exchange interaction. Even though exchange interaction is nothing more than electrostatic interaction, 

arising because charges of the same sign cost energy when they are close together and save energy when 

they are apart, one needs to use the tools of quantum mechanics to describe this phenomenon. The general 

idea is that the two electrons have to be either in symmetric or antisymmetric state in order to behave 

properly under the operation of particle exchange. For electrons the overall function must be antisymmetric 

hence the spin state can be either antisymmetric singlet (S = 0) in case of symmetric spatial state or 

symmetric triplet (S = 1) in case of antisymmetric spatial state. After some algebraic manipulation, it can be 

shown (37), (41) that the spin-dependent term of the effective exchange spin Hamiltonian is: 

              (2.10)  

where J is the exchange coupling constant, which is actually half of the energy difference between singlet 

and triplet spin state. This equation is relatively simple to derive for two spins, but its generalization to a 

many body system is far from trivial. In spite of that, it is known that such interactions are active between all 

neighbouring spins, formally described with the Heisenberg Hamiltonian: 

               
   

  (2.11)  

Here i > j avoids the “double-counting”. Based on the sign of the J we distinguish between the ferromagnetic 

(J > 0) interactions, which tend to coalign the interacting moments, and antiferromagnetic (J < 0) 

interactions, favouring the oppositely aligned moments. 

Although the exchange interaction between the two neighbouring magnetic atoms, so called direct 

exchange, seems the most obvious route for the exchange interaction to take, the reality in physical 

situations is rarely that simple. Very often the direct exchange is too weak to run the magnetic properties of 

the system, because of the insufficient overlap between the neighbouring magnetic orbitals. In rare earths, 

for instance, the 4f electrons are strongly localized and lie very close to the nucleus, with little probability 

density extending further than about a tenth of the interatomic spacing. Even in transition metals, such as 

Fe, Co, Ni, where the 3d orbitals extend further from the nucleus, it is extremely difficult to justify why direct 

exchange should lead to the observed magnetic properties. 

In fact, the exchange mechanism which is responsible for the magnetic properties in majority of non-metallic 

magnetic solids is known as superexchange (42). It can be defined as an indirect exchange interaction 

between two non-neighbouring magnetic ions, which is mediated by a non-magnetic ion (ligand) between 
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them. It arises because there is a kinetic energy advantage for antiferromagetism, i.e., the antiferromagnetic 

coupling lowers the energy of the system by allowing the electrons to become delocalized over the whole 

magnetic structure, thus lowering the kinetic energy.  

Finally we list the Goodenough-Kanamori-Anderson (GKA) rules, which are a set of guidelines for estimating 

the sign and relative magnitudes of superexchange interactions (42), (43), (44), and can be summarised as 

follows: 

1. Generally interactions in magnetic oxides will be antiferromagnetic. 

2. The exchange between eg electrons on different ions connected by a 180° bond is stronger than that 

between the t2g electrons. 

3. A small ferromagnetic coupling can occur for interaction between t2g electrons separated by a 90° bond, 

or by eg and t2g electrons separated by a 180° bond. 

4. Completely filled shells with an equal number of up and down spins do not contribute to the 

superexchange interaction. 

These rules were experimentally verified for many transition metal oxide compounds (41), (45). 

2.2.2.3 Higher order exchange interaction contributions 

Sometimes, in addition to the isotropic part of the exchange interaction, anisotropic as well as antisymmetric 

parts need to be taken into the account. These are on the other hand determined by relativistic effects, i.e., 

by the admixture of the excited into the ground state by spin-orbit coupling. We note that in case of 

transition metal ions, spin-orbit coupling can be treated as a perturbation (due to the “quenching ” of L). 

In the first order perturbation one can derive the antisymmetric anisotropic exchange interaction, so-called 

Dzyaloshinsky- Moriya (DM) interaction, which takes the form 

                      

   

 (2.12)  

Such antisymmetric form of the spin interaction was first suggested by Dzyaloshinsky, purely from the 

symmetry arguments, to account for the phenomenon of the occurrence of weak ferromagnetism (46). A 

microscopic derivation of this interaction was later given by Moriya (47) together with the symmetry 

restraints that the Dzyaloshinsky-Moriya vectors        must obey. The symmetry arguments are based on the 

crystal space group symmetry, i.e., considering that two ions 1 and 2 located at points A and B, respectively, 

and the point bisecting the straight line AB is denoted by C, the following rules are obtained (47):  

1. When a centre of inversion is located at C,        = 0. 

2. When a mirror plane perpendicular to AB passes thorough C,          mirror plane or         AB. 

3. When there is a mirror plane including A and B,         mirror plane. 

4. When a two-fold rotation axis perpendicular to AB passes through C,         two-fold axis. 

5. When there is an n-fold axis (n > 1) along AB,          AB. 

In short, these rules are often summarized as (12), (48) 

                     
 

  (2.13)  
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where        is a normalized vector connecting the magnetic moment on site 1 with the ion li,        is a 

normalized vector connecting the ion li with the magnetic moment on site 2, and i runs over all bridging ions. 

Further, the result of the second order perturbation calculation is the symmetric anisotropic exchange. In its 

principal frame this interaction can be written as  

             
   

 

   

       
   

    
 
  

 
   (2.14)  

This interaction is also called the pseudo-dipolar interaction because of the formal similarity of its form with 

the dipolar interaction. 

The size of the two anisotropic terms can be estimated as          g/g)⋅Jeg and d  (g/g)2 ⋅ Jeg , where g 

accounts for the g-shift from the free electron value. Here the Jeg is not the simple exchange integral 

between the ground state of the two interacting ions, J, considered in the isotropic part of the exchange 

interaction, but is rather the exchange interaction with the excited state (41), (40). Hence the assumption Jeg 

 J, giving a simple estimation for D and d is valid only in case of orbitally nondegenerate ground states, e.g., 

in Mn2+, Gd3+ or organic radicals, for which g is almost exactly 0. On the other hand, for systems with 

degenerated states (with significant g/g) Jeg interaction can be completely different from J, i.e., it can have 

different sign and different intensity. For this reason estimations for D and d have to be made with extreme 

circumspection. Furthermore, the estimation of the size of the DM vectors suffers a further faultiness. 

Namely, as already stressed, it critically depends on the local symmetry. For instance, if there is a centre of 

inversion present in the midpoint of two coupled spins the DM interaction will be identically equal to zero. 

2.3 Order in magnetic materials 
The above presented interactions can effectively produce strong internal magnetic fields, leading to a 

particular type of magnetic ordering below certain temperatures. Considering only the leading exchange or 

superexchange interactions, the simplest magnetic order is so called ferromagnetic one, where all magnetic 

moments in the system are parallel due to the positive sign of J. However, already when J < 0 is considered, 

far more complicated magnetic orders can be anticipated, depending on the spatial arrangement of the 

magnetic moments; and one can imagine what happens when additional terms in spin Hamiltonian are 

realized. In other words, the magnetic structure is defined by the geometrical arrangement of the magnetic 

ions as well as the type of the interactions between the magnetic moments. We note that second order 

phase transitions are always associated with the reduction of symmetry; thereby magnetic ordering is to 

some extent defined by the symmetry of the paramagnetic state. 

2.3.1 Antiferromagnetism 

If the exchange J is negative the simplest possible ordering is the two sublattice antiferromagnetic structure. 

Such a state is considered as two interpreting sublattices, on one of which the magnetic moments point up 

and down on the other. The nearest neighbours of each magnetic moment will then be entirely on the other 

sublattice. 

Let us now consider the effect of strong magnetic field on antiferromagnet, with T = 0 to avoid any 

complications from thermal fluctuations. If the magnetic field is large enough, it must eventually dominate 

over any internal molecular field and force all the magnetic moments to lie parallel to each other. However, 

as the field is increased, although the final result is clear, the route to that state depends strongly on the 

direction of the applied field with respect to the initial orientation of the sublattice magnetization, so-called 

easy axis. This orientation is determined by the single-ion anisotropy imposed by the crystal field, which 
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causes that magnetic susceptibility is different if we apply the field parallel or perpendicular to the easy axis. 

In the latter case the magnetic moments are being turned in the direction of the field (Figure 4a); beyond 

certain field BC1 all the moments point in the direction of the applied field. On the other hand, if the applied 

field is parallel to the magnetic moments, they do not turn until the applied field exceeds critical value BSF 

(Figure 4b), determined by the strength of the crystal field and the exchange interaction. At that point 

magnetic moments snap into different configuration (Figure 4b); this phenomenon is called spin-flop 

transition. Beyond this point the magnetic moments are being turned in the direction of the field, up to BC2 > 

BSF, when all the spins are aligned along the external field. 

 

Figure 4: Magnetic moments in antiferromagnet: (a) external field perpendicular to the easy axis, (b) external field parallel to the 
easy axis. 

In contrast to ferromagnet, antiferromagnets have often more feasible magnetic ground state 

configurations, where the number of possibilities strongly depends on the crystal lattice (Figure 5). In other 

words, the actual magnetic ordering is strongly defined by the spatial arrangement of the magnetic ions. In 

extreme, one can even imagine a geometry, where exists a competition between the magnetic interactions. 

So, in case when all of the interactions cannot be simultaneously satisfied, frustration is a plausible result. 

This might lead to far more complex magnetic structures, with canted as well as amplitude modulated 

magnetic moments. 

 

Figure 5: (a) Four types of antiferromagnetic order, which can occur on simple cubic lattice. The two possible spin states are 
marked + and -. (b) Three types of the antiferromagnetic order, which can occur on body-centred cubic lattice. 

2.3.2 Incommensurate magnetic order 

On the other hand, complex magnetic structures can be also realized, when magnetic interactions of 

different sign are assumed. The resulting competition between the magnetic interactions leads to frustration 

of the magnetic moments, since all the interactions cannot be satisfied at the same time. Nevertheless, the 

magnetic moments will try to order in a manner that will minimize the system’s magnetic energy, which 

often drives the system into an incommensurate magnetic state. For instance, let us consider a simple one-

dimensional chain, where J1 indicates the exchange interaction between the nearest-neighbouring magnetic 

moments and J2 is the interaction between the next-nearest-neighbours (Figure 6a). If the exchange 

interaction is isotropic, the energy of the system can be written as 
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                         (2.15)  

where   is the angle between the neighbouring magnetic moments along the chain and S is the spin 

operator. The energy is minimized when        , which yields 

                    (2.16)  

Solutions for this are either      = 0, which implies   = 0 or   =  (ferromagnet or antiferromagnet), or 

              (2.17)  

Obviously this solution corresponds to helical/spiral magnetic ordering and is favoured over either 

ferromagnetism or antiferromagnetism when J2 < 0 and |J1| < 4|J2| (Figure 6b). In general, the pitch of the 

spiral is arbitrary, i.e., it is not necessary commensurate with the lattice parameter, and hence in case of 

incommensurate modulation along the so called “magnetic wave vector”    (Figure 6) no two magnetic 

moments in a chain will have exactly the same spin orientation. 

 

Figure 6: (a) A simple one-dimensional chain, where J1 indicates the exchange interaction between the nearest-neighbouring 
magnetic moments and J2 is the interaction between the next-nearest-neighbours. (b) The phase diagram for this model (37) and 
corresponding magnetic orders. 

We note that competing exchange interactions can produce also incommensurate amplitude modulated 

magnetic structures, where amplitude of the magnetic moments is altered instead of their orientation. In 

such arrangements so called spin waves are observed, where at particular points in the crystal magnetic 

moments are completely suppressed while at some they are fully developed. Such magnetic ordering was 

found in several rare-earth manganites, for instance TbMnO3 (49), ErMn2O5 and TbMn2O5, (50), and Er5Sn3 

(51). 

2.3.3 Frustration 

As already implied, ordinary two sublattice antiferromagnetic ordering is being altered in so called 

geometrically frustrated antiferromagnetic materials. In such compounds the magnetic interactions between 

spins are frustrated by their geometric arrangement in the crystal lattice. In other words, a magnetic system 

of classical or quantum spins is frustrated when all interactions among the spin pairs cannot have 

simultaneously their optimal values. Typical for these systems is that they remain magnetically disordered 

even when cooled well below the ordering temperature, naively expected from the strength of pairwise 

interaction. On the other hand, in such systems, short-range magnetic correlations often persist far above 

the long-range ordering temperature, forming small islands of magnetically ordered regions. Typical 

J2 

J1 
a 

b   
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geometrically frustrated systems are so-called spin glasses (52), where magnetic moments are randomly 

distributed through the whole crystal matrix. 

The simplest example of a frustrated system is when three spins are mutually antiferromagnetically coupled: 

once two spins orient in the opposite directions the third one cannot be antiparallel to both of them (Figure 

7) and thus at least one antiferromagnetic interaction is unsatisfied. It is also obvious that system is 

degenerated, which makes the system’s ground state very sensitive to thermal fluctuations. For this reason, 

long-range magnetic ordering occurs at lower temperature, as in non frustrated magnetic arrangement. 

 

Figure 7: Frustration in three spin system. 

Now imagine spins lying on a triangular lattice (Figure 8a). What will be the ground state of such a system? 

The answer is far from being trivial, since there are a variety of different spin configurations, with minimal 

energy, which cannot satisfy all the pairwise interactions simultaneously. The consequence is that the 

system does not exhibit long-range magnetic ordering, as expected from the strength of the exchange 

interactions. The tendency of a system to minimize its entropy makes frustrated systems very sensitive to 

perturbations, i.e. all the anisotropic interactions become more pronounced. Consequently crystal field 

anisotropy, dipolar interactions, deviations from scalar Heisenberg exchange, further-neighbour exchange, 

and impurities or inhomogenities can all transform the favoured ground states and shift the spectral weight 

of excitations. 

The concept of frustration can be extended to other geometries as well. Beside triangular lattice (Figure 8a), 

frustration is also encountered in so called Kagomé lattice (Figure 8b), in ordinary square lattice, when the 

diagonal interactions are present and in certain 3D geometries (Figure 8c,d,e). The frustration can be 

brought in to the system also with the competition between the nearest and next-nearest neighbours, as 

suggested above for a case of one-dimensional chain with next-nearest neighbour interactions (Figure 6).  

a          b       c         d      e  

Figure 8: Frustrated 2D geometries: (a) triangular, (b) Kagomé and frustrated 3D geometries: (c) fcc cubic, (d) pyrochlore, (e) spinel 

Unfortunately real systems, which correspond to any of these theoretical geometries, are very rear or they 

are limited to a certain building block of a compound, e.g., part of the unit cell.  

2.4 Magnetic excitations 
In this section we focus on the low-energy magnetic excitations encountered in the magnetically ordered 

systems. At T = 0, the physical systems are typically considered as static (even though in systems with 

degenerate or nearly degenerate ground states quantum fluctuations are likely to occur). However, with 

increasing temperature the order is disturbed by thermally excited excitations, e.g., excitations from 

magnetic ground state into a higher energy magnetic state, quantized as magnons. Such excitations are 

? 

J J 

J 
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typically characterized by a dispersion relation, i.e., a relationship between angular frequency  and wave 

vector    (equivalently between energy    and momentum    ). The crucial feature of the dispersion relation 

is that  = 0 at    = 0 and hence excitation of such a mode (so called “acoustic mode”) does not cost any 

energy when the wavelength  = 2/q is long enough, i.e., there is no energy gap to leap across from the 

ground state of the system ( = 0,    = 0) to the lowest excited state. Whenever you have broken a 

continuous global symmetry (as you do when you make a solid from a liquid or a ferromagnet from a 

paramagnet) it is possible to produce long-wavelength excitations in order parameter (typically 

magnetization in magnetically ordered system) for vanishingly small energy cost, so called Goldstone modes. 

For instance, the Goldstone modes of a ferromagnet are called spin waves. These are waves of precession of 

the magnetic moments. We note however, that in spite of the fact that in a simple isotropic ferromagnet the 

energy gap in the dispersion relation at    = 0 is zero, the situation changes when anisotropic or 

antiferromagnetic interactions are considered. 

2.4.1 Antiferromagnetic resonance 

Here we present a simple molecular field approach to magnetic excitation spectrum in the antiferromagnet, 

which is measured as antiferromagnetic resonance (AFMR). The basic advantage of the molecular field 

theory is that it does not treat each spin in the physical system (where there is typically 1020 spins) and 

interaction with its neighbours individually, but it rather groups spins into sublattices (in the simplest case 2), 

and only then the interaction between these two is considered. This way, calculations of the AFMR become 

tractable and even relatively easy to solve. However this comes with a cost of losing all detailed information 

about the interactions between the spins in the individual sublattice and the difference in their local 

environments. 

Let us now assume the magnetic structure, which can be described by a two oppositely aligned magnetic 

sublattices, so that the nearest neighbours of each magnetic moment are entirely on the other sublattice, 

and a simple uniaxial anisotropy. Hence the spin Hamiltonian in the applied magnetic field is: 

              
   

             
 

        
 

 

  (2.18)  

where indices i and j runs over all the spins in the system, Jij is the antiferromagnetic exchange between the 

nearest-neighbouring spins, Dcf is the crystal field anisotropy constant, and      is the applied magnetic field. 

On the other hand, the expression for the free energy F states that  –                  
 , where kB is 

the Boltzmann constant and the sum runs over the n possible states with the energy En(B) depending on the 

magnetic field B. Assuming, that at T  0 K the system is in its ground state, we can write  

              
   

             
 

        
 

 

  (2.19)  

Further, assuming that magnetic moments within the same sublattice have the same orientation, resulting in 

a net-average sublattice magnetization                  , where, l denotes the sublattice and k runs over 

the N magnetic ions in l-th sublattice, we obtain the following expression for the magnetic free energy: 

                           
 

       
 

 

  (2.20)  

where           
  , and             

  . 
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Based on the obtained expression for the magnetic free energy and knowing the magnetic structure of the 

system, i.e., magnitudes and orientations for      , we can calculate the molecular field                 acting 

on the sublattice magnetization       and solve the equations of motion: 

      
  

                 (2.21)  

Assuming that the time dependent part of magnetization oscillates as eit, the resonant frequencies are 

simply the eigenvalues of the matrix, with 3l × 3l elements (equation 2.21) (for each sublattice magnetization 

there are three spatial coordinates).  In order to make calculations manageable we make the following 

approximations (53), (54). We assume that the deviations of each magnetization from the equilibrium value 

are small; hence we keep only the components, perpendicular to it. Consequently we can write each 

sublattice magnetization as                      , where        represents the equilibrium orientation and 

               
     the oscillating part, perpendicular to it. The next step is to tailor the       field according to 

the former assumption. Hence the molecular field acting on the sublattice magnetization          can be 

written as                                         . As a result equation 2.21 can be rewritten as: 

      
  

                                  

                                                                   
(2.22)  

The first term on the right is equal to zero, since the equilibrium orientation of l-th magnetization is 

perpendicular to molecular field acting on it. In sense of the molecular field theory we also neglect the last 

term as it oscillates with an angular frequency 2 and we expect it to be small compared to the other 

contributions. What we achieved is that oscillating part of each sublattice magnetization is linearly 

dependent on the oscillating parts of the remaining sublattice magnetizations. On top of that, the oscillating 

part of each sublattice magnetization is perpendicular to its equilibrium orientation, so we can describe it 

only with two components instead of three. The result is that we are able to reduce 3n nonlinear equations 

to set of 2n linear equations, which can be solved for a reasonable number of sublettice magnetizations. 

By using this asset of equations and mathematical tools, the leading terms of the spin Hamiltonian of a 

particular system can be determined. For instance, the crystal field anisotropy, resulting in the single-ion 

anisotropy, the Dzyaloshinski-Moriya interaction, or similar terms in the effective Hamiltonian, usually 

introduces a gap in the magnon spectra. The properties of the gap can be explored by studying the field 

dependence of the electron spin resonance. In case we are dealing with a single crystal, the nature of the 

spin-lattice coupling can be further studied by applying the field in different crystallographic directions. 

As an example we write here the resulting resonant frequencies for our two-sublattice model with uniaxial 

single-ion anisotropy (55), (56): 

               (2.23)  

In equation 2.23                  , where BA is the magnetic anisotropy field and BE is the exchange 

field, corresponding to the single-ion anisotropy Dcf (Ecf) (equations 2.7 and 2.8) and the exchange interaction 

J, respectively. We stress that zero field degeneracy can be removed by Dzyaloshinsky- Moriya or additional 

competing exchange interactions. 
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Figure 9: Frequency dependence of the resonant frequencies for two-sublattice model with uniaxial single-ion anisotropy 
described by equation 2.23. 

In practice it has been shown that in addition to the antiferromagnetic resonance one needs to make a 

number of additional experiments in order to get enough data to determine numerous free parameters. One 

of the most important additional experiments is neutron scattering. This technique gives detailed 

information about the equilibrium spin arrangement. However, since this method is time-consuming, the 

measurements are usually made only in zero-field. Therefore, magnetization measurements in external field 

are indispensable, as they provide information about possible spin-flop transitions and orientations of the 

easy, hard and intermediate directions, when also angular dependence in is performed. 

2.5 Magnetoelectric coupling in frustrated magnetic systems 
Very interesting and attractive phenomenon encountered in magnetically frustrated materials is the 

magnetoelectric (ME) coupling. In principle, the ME coupling is a rather rare phenomenon, which is typically 

very weak. However, strong ME coupling was found in systems with cycloidal or transverse conical structures 

(28), which are often a consequence of magnetic frustration, e.g., in the ME multiferroic TbMnO3. Hence, the 

discovery of spin-driven ferroelectricity in this compound in 2003 (5) has ignited extensive research activities 

focused on the ferroelectric properties of frustrated magnetic systems. 

2.5.1 Ferroelectricity 

In order to understand magnetoelectric coupling, one should first know why the electric polarization in 

ferroelectric state develops at all. According to the formal definition, a ferroelectric material is one that 

undergoes a phase transition from a high-temperature phase that behaves as an ordinary dielectric (so that 

an applied electric field induces an electric polarization, which goes to zero when the field is removed) to a 

low-temperature phase that has a spontaneous electric polarization, whose direction can be switched by an 

applied field. Comparison with the ferromagnets reveals that they have many analogues properties, with the 

electric polarization,    , corresponding to the magnetization,     ; the electric field,    , corresponding to the 

magnetic field,     ; and the electric displacement,     , corresponding to the magnetic flux density,    . 

The origin of the ferroelectricity lies within the fact that any lattice of oppositely signed point charges is 

inherently unstable (21). However, the short-range repulsions between adjacent electron clouds can stabilize 

the electronic structure, as in case of ionic materials. The existence or absence of ferroelectricity is hence 

determined by a balance between these short-range repulsions, which favour the nonferroelectric 

symmetric structure, and additional bonding considerations, which might stabilize the ferroelectric phase. 

Here one can see the resemblance to the establishment of the magnetic order in frustrated magnetic 

materials, where long-range ordering is also achieved through a competition between the opposing 

magnetic interactions. Similarly, in ferroelectric compounds the short-range repulsions dominate at high 

temperature, resulting in the symmetric unpolarized state. As the temperature is decreased, the stabilizing 

forces, associated with the polarization of the ions as they are displaced, become stronger than the short-

range repulsive ion-ion interactions, and the polarized state becomes stable even in the absence of an 

B 


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applied field. In short, in order to ensure the stability of ferroelectric order, the system should exhibit an 

antisymmetric spatial distortion, i.e., the spatial inversion symmetry has to be broken. 

The most widely studied ferroelectrics are perovskite-structure oxides, ABO3, which have the prototypical 

cubic structure shown in Figure 10a. The cubic perovskite structure is characterized by a small cation, B, at 

the centre of an octahedron of oxygen anions, with large cations, A, at the unit cell corners. According to Hill 

(21) a simple phenomenological explanation of the ferroelectricity for a typical ferroelectric perovskite oxide 

consists of two complementary phenomenological models. The small B cation in ferroelectric perovskite 

oxides should always be able to lower its energy by shifting along one of the (111) directions (unless strain in 

the lattice stabilizes a different displacement). This leads to the characteristic “double-well” potential energy 

for the position of the small cation as a function of position between the oxygen anions, C, as shown in 

Figure 10b. At high temperatures, away from the phase transition temperature, the order-disorder model is 

applicable, which states that the B cations are always displaced along one of the cube diagonals, i.e., 

displacements along all possible (111) directions are allowed. At low temperatures the soft-mode model 

should be applied, stating that the B cation displacement is stable only at low temperatures. Above the Curie 

temperature, there is a restoring force that tends to push the B cation back to the centre. As the 

temperature is reduced, the phonon associated with this restoring force (the so-called “soft-mode” phonon) 

becomes weaker, until at the Curie temperature its frequency is zero and the displacement occurs 

spontaneously. 

 

Figure 10: (a) Cubic perovskite structure. The small B cation (in blue) is at the centre of an octahedron of C oxygen anions (in red). 
The large A cations (white) occupy the unit cell corners. (b) Characteristic double-well potential energy U as a function of the 
position of the B cation between the oxygen anions in perovskite ferroelectrics R. 

A significant observation is that most perovskite ferroelectrics contain B ion in a d0 state (for instance Ti4+ in 

the ATiO3). The role of lone pair electrons of the ions in the d0 state in the perovskite ferroelectrics was 

extensively studied by the density functional theory (DFT) with the local density approximation (LDA) (20). 

The calculations indicate that the lone pair electrons are stereochemically active, i.e., are easily polarisable, 

and are the primary driving force behind the structural distortions essential for the formation of electric 

polarization in these materials. At high temperatures, the lone pair electrons are more or less symmetrically 

distributed around the d0, whereas below the ferroelectric transition the lowest unoccupied energy levels - d 

states - hybridize with O 2p ions, which results in a lobe-like asymmetric distribution of the lone pair 

electrons. Moreover, calculations reveal that all lone pair electrons shift in the same manner, which 

manifests in the macroscopic electric polarization.  

2.5.2 Magnetoelectric multiferroics 

Intuitively, strongest magnetoelectric coupling is expected to be found in systems, where simultaneously 

(anti)ferromagnetic and ferroelectric ordering occur. Such materials, exhibiting a phase where at least two 

ferroic orders (ferrelectricity, (anti)ferromagnetism or ferroelasticity) are developed, are named 

multiferroics (Figure 11) - in our case magnetoelectric multiferroics. Their allowed physical, structural, and 

electronic properties are restricted to those that occur both in (anti)ferromagnetic and in ferroelectric 
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materials. Here we list the limiting factors, which might prevent the simultaneous occurrence of 

(anti)ferromagnetism and ferroelctricity and would help us answer the question – why magnetoelectric 

multiferroics are so rare? 

 

Figure 11: Phase control in ferroics and multiferroics (57). The electric field E, magnetic field H, and stress  control the electric 

polarization P, magnetization M, and strain , respectively. In a ferroic material, P, M, or  are spontaneously formed to produce 
ferromagnetism, ferroelectricity, or ferroelasticity, respectively. In a multiferroic, the coexistence of at least two ferroic forms of 
ordering leads to additional interactions. In a magnetoelectric multiferroic, a magnetic field may control P or an electric field may 
control M (green arrows). 

A primary requirement for the existence of ferroelectricity is a structural distortion from the prototypical 

high-symmetry phase that removes the centre of symmetry and allows an electric polarization. There are 31 

point groups that allow a spontaneous electric polarization,    , and 31 that allow a spontaneous magnetic 

polarization,      (27). Thirteen point groups (1, 2, 2’, m, m’, 3, 3m’, 4, 4m’m’, m’m2’, m’m’2’, 6’, and 6m’m’) 

are found in both sets, allowing both properties to exist in the same phase. The number of possible point 

groups increases further if also antiferromagnetic ordering is considered. Hence, the total number of 

possible crystal structures (the total number of Shubnikov point groups is 122), it is far from being 

insignificant, and many candidate materials that are not in fact ferromagnetic and ferroelectric exist in one 

of the allowed symmetries. Therefore, it is unlikely that symmetry considerations are responsible for the 

scarcity of ferromagnetic ferroelectric materials. 

The second possible limitation is the conductivity of the sample. By definition, a ferroelectric material must 

be an insulator (otherwise, an applied electric field would induce an electric current to flow, rather than 

cause an electrical polarization). Ferromagnets, although not required to have specific electrical properties, 

are often metals, for example, the elemental ferromagnets Fe, Co, and Ni and their alloys. Therefore, one 

could assume that the lack of the simultaneous occurrence of magnetic and ferroelectric ordering is simply 

the result of a dearth of magnetic insulators. However, considering also ferrimagnets, weak ferromagnets, or 

antiferromagnets, this argument no longer holds, because most of the listed materials are, in fact, insulators. 

Therefore, it appears that we cannot blame the lack of magnetically ordered ferroelectrics simply on a 

shortage of magnetically ordered insulators. 

We already noted that the common perovskite oxide ferroelectric materials have a formal charge 

corresponding to the d0 electron configuration on the B cation. Clearly, if there are no d electrons creating 

localized magnetic moments, then there can be no magnetic ordering of any type, either ferro-, ferri-, or 

antiferromagnetic. It appears, however, that in most cases, as soon as the d shell on the small cation is 

partially occupied, the tendency for it to make a distortion that removes the centre of symmetry is 

eliminated. This could be the result of numerous effects, including size, the tendency to undergo a different, 

more dominant distortion, electronic properties, magnetic properties, or an arbitrary combination of the 
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above. Apparently, there are lots of reasons, which seem to explain why the coupling between the magnetic 

order and electric polarization is usually small and rare. 

In a last decade, however, a way around these limitations was found, as strong ME coupling has been 

discovered in complicated magnetic structures, typical for magnetically frustrated systems. Here, spatial 

inversion symmetry is usually broken only after magnetic order sets in, which thereby enables the 

development of electric polarization. Still, large ME effect is limited to the temperatures far below room 

temperature, necessary for practical applications. Thus, the ongoing research is now focused on the quest 

for room-temperature ME effect. In this respect, Eerenstein et al. (24) encourage to study magnetic 

materials with reduced dimensionality, since one- or two-dimensional magnetic order regularly persists to 

much higher temperatures than three-dimensional order does.  

2.5.3 Magnetoelectric coupling 

The explanation for the observed strong ME effect lies in the crystal structure of the exemplary systems (for 

instance ReMnO3, where Re is rare-earth) (5), (25). For these compounds it is typically that their crystal 

structure has the spatial inversion symmetry, while their magnetic ordering does not. Hence, when magnetic 

order sets in the spatial inversion symmetry is broken and non-centrosymmetric lattice distortions are 

induced through exchange-striction, leading to the presence of electric polarization, while bypassing the d0 

condition. As it turns out, magnetic ordering without magnetic inversion symmetry is often driven by the 

presence of magnetic frustration imposed by the competing exchange interactions. 

2.5.3.1 Phenomenological approach to magnetoelectric coupling 

Several phenomenological theories, based on symmetry considerations, have been proposed to explain such 

phenomena (58), (59), (60). In these theories the free energy F is calculated using Ginzburg-Landau type 

continuum field theory in terms of an applied magnetic field     , whose i-th component is denoted Hi, and an 

applied electric field    , whose i-th component is denoted Ei. Note that this convention is unambiguous in 

free space, whereas Ei within a material encodes the resultant field that a test particle would experience. Let 

us consider a non-ferroic material, where both the temperature-dependent electrical polarization Pi(T) 

(C/cm2) and the magnetization Mi(T) (B per formula unit, where B is the Bohr magneton) are zero in the 

absence of applied fields and there is no hysteresis. This allows us to write F for an infinite, homogeneous 

and stress-free medium under the Einstein summation convention in S.I. units as (24): 

        
 

 
          

 

 
                  

   

 
       

   

 
           (2.24)  

Here, the first term on the right hand side describes the contribution resulting from the electrical response 

to an electric field, where the permittivity of free space is denoted 0, and the relative permittivity ij(T) is a 

second-rank tensor that is typically independent of electric field Ei in non-ferroic materials. The second term 

is the magnetic equivalent of the first term, where ij(T) is the relative permeability and 0 is the 

permeability of free space. The third term describes linear magnetoelectric coupling via ij(T); the third-rank 

tensors ijk(T) and ijk(T) represent higher-order (quadratic) magnetoelectric coefficients. 

In the present scheme, all magnetoelectric coefficients incorporate the field independent material response 

functions ij(T) and ij(T). The magnetoelectric effects can then easily be established in the form Pi(Hj) or 

Mi(Ej). The former is obtained by differentiating F with respect to Ei, and then setting Ei = 0. A 

complementary operation involving Hi establishes the latter. One obtains:  
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        (2.25)  

           
   

 
         (2.26)  

In ferroic materials, the above analysis is less rigorous because ij(T) and ij(T) display field hysteresis. 

Moreover, ferroics are better parameterized in terms of resultant rather than applied fields (61). This is 

because it is then possible to account for the potentially significant depolarizing/demagnetizing factors in 

finite media, and also because the coupling constants would then be functions of temperature alone, as in 

standard Landau theory. In practice, resultant electric and magnetic fields may sometimes be approximated 

(7) by the polarization and magnetization respectively. 

Eventually, the coupling between electric polarisation     and magnetisation      is constrained by symmetry 

relations, as behaviour of these two quantities under the system’s symmetry operations as well as time 

reversal and spatial inversion is well defined. Additionally, free energy F is a scalar, and thereby demands 

that the ME coupling term in F is invariant to all symmetry operations. In the end, this gives an estimate 

about which Pi and Mi components might play a role in the magnetoelectric coupling. In order to explain the 

ME coupling in different magnetic arrangements, several coupling terms, involving different Pi and Mi 

components, were proposed. For instance, Mostovoy (58) developed an explanation for the occurrence of 

the electric polarization in incommensurate cycloidal structures, while Betouras et al. (59) predicted that 

electric polarization can be found also in commensurate magnetic orderings. The main difference between 

these two theories is that the former assumes a spatially homogeneous electric polarisation, whereas the 

latter allows spatial variation of     within the material. To sum up, based on the knowledge of the crystal and 

magnetic symmetry of the magnetoelectric multiferroic one can predict a possible orientation of the electric 

polarization and on contrary, the orientation of the electric polarization reflects the symmetry of the 

magnetic system. 

2.5.3.2 Microscopic mechanism of the magnetoelectric coupling 

The microscopic mechanism of the magnetoelectric coupling is not yet fully understood, since there still exist 

several rival hypotheses. One possible candidate is the so-called `inverse Dzyaloshinskii-Moriya' mechanism 

(62), (63), where a structural distortion lowers the energy of a spiral chain when there is a Dzyaloshinskii-

Moriya exchange interaction between spins. In other words, in order to promote chiral magnetic ordering, 

all ligand ions move in parallel, thereby increasing the antisymmetric Dzyaloshinskii-Moriya exchange 

interaction. The resulting electric polarisation has the form 

                    (2.27)  

where      is the vector connecting the i-th and j-th spins, which have spin     and     respectively.  

 

Figure 12: (a) Scheme of magnetic ions coupled by antisymmetric Dzyaloshinskii-Moriya exchange interaction via the exchange 
pathway determined by ligand ion A and vectors         and        . (b) Effect of the inverse Dzyaloshinskii-Moriya mechanism: in 

order to promote chiral magnetic ordering, all ligand ions move in parallel, thereby increasing the antisymmetric Dzyaloshinskii-

Moriya exchange interaction, and eventually induce macroscopic electric polarization     . 
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The above result is strictly valid only for systems with just one magnetic ion per unit cell, and a magnetic 

propagation vector that is parallel to the lattice vector. Nevertheless, the underlying physics should be 

similar for more complicated systems. The same result is arrived at when a flow of electron spin through a 

material, i.e., spin supercurrent, is considered (62). Both these mechanisms are applicable only for cycloidal 

or conical magnetic structures, where the magnetic ordering is chiral. 

On the other hand, for the occurrence of the electric polarization in the collinear magnetic structures, 

alternative explanations (64), (65), (66), (67) were proposed. These theories are based on the so called 

“exchange-striction” magnetoelectric coupling mechanism, which assumes that the structural distortion, 

responsible for the ferroelectric polarization, occurs in order to minimize the superexchange interaction; i.e., 

in order to reduce the overall magnetic energy, the ligand ion, forming the superexchange bridge, is 

assumed to shift, thereby modifying the bond angle, , (Figure 13) and consequently chang the strength of 

the superexchange interaction. Hence the electric polarization can be written as 

             (2.28)  

Compared to the inverse Dzyaloshinskii-Moriya ME coupling mechanism, the exchange-striction is expected 

to be stronger, since isotropic superexchange coupling interaction is typically stronger compared to the 

antisymmetric Dzyaloshinskii-Moriya coupling. 

 

Figure 13: (a) Scheme of magnetic ions coupled by isotropic superexchange interaction via the superexchange pathway 

determined by ligand ion A and angle . (b) Effect of the exchange-striction mechanism: to promote the up, up, down, down 
magnetic ordering, all ligand ions move in parallel, thereby changing the bond angle and consequently the strength of the 

superexchange interaction, and eventually induce macroscopic electric polarization     . 

In conclusion, we stress that for large electric as well as magnetic responses, one should seek systems with 

crystal structures, where magnetic ions with large moments (for instance Fe3+ with d5 electrons and S = 5/2) 

are superexchange-coupled via ions with empty d-orbitals, having easily polarisable lone pair electrons (for 

instance Te4+ with 5s25p0 electronic configuration).  
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3 Experimental 
In this chapter we will briefly introduce the experimental techniques used in course of our investigation of 

magnetic and electric properties of two-dimensional systems of magnetic clusters with triangular geometry. 

We have utilized local probe techniques (such as nuclear magnetic resonance, electron magnetic resonance 

and mu-ion spin relaxation), diffraction techniques (x-ray and neutron diffraction) and bulk measurements 

(specific heat, thermal expansion, electric polarization, dielectric and magnetic susceptibility measurements). 

3.1 Magnetic resonance techniques 

Magnetic moment    in an applied magnetic field      experiences torque and being fixed it will start to 

precess at an angular frequency |B0|, where  is the gyromagnetic ratio. This behaviour is described by so 

called Bloch equation of motion:  

   

  
             (3.1)  

As a consequence, a system of magnetic moments in a magnetic field can absorb energy at this frequency, 

i.e., one may observe a resonant absorption of energy from radiofrequency (rf) field, if tuned to the correct 

frequency. This brought to the general expression - magnetic resonance, which stands for magnetic 

resonance absorption experiments performed on an ensemble of magnetic moments within the investigated 

specimen. 

In practice the applied rf field is typically linearly polarized (along the x-axis) and perpendicular to the static 

magnetic field      (along the z-axis), which leads to an extra transverse magnetization written in the 

laboratory frame as 

        
           

                                (3.2)  

where   
           is the amplitude of the transverse component of the magnetization, and Brf is the 

frequency and amplitude of the oscillating rf field, while the ’ and ’’ are the real and imaginary parts of rf 

susceptibility  = ’ + i’’. Considering now that the signal acquisition in the magnetic resonance techniques 

is associated with the measurements of the power absorbed in the sample. In particular, change of the real 

part of the complex impedance of the sample R/R = Q’’, where Q is the quality factor depending on the 

experimental setup, is being measured. Thus the actually acquired quantity is 

       
  

    
              

      
 

  

  (3.3)  

We note that the above expression is written in the high-temperature limit, when the energy of thermal 

fluctuations is much larger than the Zeeman energy splitting and     denotes the thermal average.  

This expression can be further simplified according to the general quantum-mechanical description of the 

magnetic resonance introduced by Kubo and Tomita (68) back in fifties. Basically they developed a linear-

response theory, where the response of the system of magnetic moments depends linearly on the external 

disturbance. The authors split the spin Hamiltonian into two parts, the term 

          (3.4)  

and the magnetic anisotropy part 

                     (3.5)  
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which was then treated as a perturbative correction. The important point in this theory is that the 

Hamiltonians within the former term commute with each other, while they do not commute with the 

Hamiltonians included in the latter term. This way, the magnetization operator in equation 3.2 can be 

transformed into interaction representation as                          . Taking into account also the 

operators relations                  allows one to rewrite the equation 3.3 into the form 

       
  

    
                                                      

 

  

  (3.6)  

Here,            denotes the angular Larmor frequency determined by static magnetic field        . 

Hence, the first term in equation 3.6 is resonant absorption that takes place at  = 0, while the second 

occurs at  = –0. In fact, in the limiting case when there is no magnetic anisotropy (H′ = 0), the spectrum 

would simply consist of two -functions. The time dependence of the correlation functions                

due to anisotropy is thus responsible for the finite linewidths, lineshifts and the shape of the absorption 

spectra, and is thus of great importance in magnetic resonance experiments. 

According to the Kubo-Tomita derivation, when the resonance at  = –0 is neglected, the normalized spin-

resonance absorption spectrum can be expressed as the Fourier transform of the relaxation function 

                          , 

                     
 

  

  (3.7)  

In the case of Gaussian random processes the relaxation function is approximated by 

                   
 

   (3.8)  

where the spin correlation function                                              (the square 

brackets [A,B] denote the commutator of the operators A and B) fluctuates on the time scale of the spin 

correlation time c, yielding a Gaussian function 

                
    (3.9)  

This result indicates that the lineshape strongly depends on the length of the correlation time and can 

consequently vary between Gaussian and Lorentzian lineshapes (as discussed in section 3.1.1.1). 

3.1.1 Electron spin resonance 

The electron magnetic resonance is usually associated with the absorption of magnetic moments 

corresponding to localized or itinerant electrons. In principle, such absorption can be seen in the case of 

paramagnetic compounds containing transition elements with incomplete inner shells, in ordinary metals, in 

magnetically ordered systems, and in case of imperfect insulators, which may trap electrons or holes. In this 

respect the expression electron spin resonance (ESR) is assigned to the experiments with paramagnetic 

species in the case when magnetic moments originate primarily from the spin momentum, as in iron-group 

metals, as well as for the resonant absorption in ferromagnetically or antiferromagnetically ordered state 

(12). 

In practice, the ESR technique provides additional information to the data obtained by bulk magnetic 

susceptibility measurements, such as SQUID (section 3.3.1). ESR can reveal the development of electronic 

spin correlations in magnetic solids, the development of internal magnetic fields, or the coupling to the 
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crystal lattice. This is due to the fact that electrons serve as local probes in the ESR measurements so that 

spectra directly reflects fluctuations of the local magnetic fields present at a particular site in the crystal.  

 

Figure 14: Sketch of ESR resonant absorption. With increasing magnetic field electron levels are being split hence when frequency 
of microwave irradiation match the energy of the splitting absorption occurs. An ESR spectrum is therefore recorded by measuring 
the magnetic field dependence of the resonant absorption. 

In paramagnetic resonance experiment one usually observes the splitting of the energy levels of the 

paramagnetic centre with S = ±1/2 due to the external magnetic field (Zeeman effect) (Figure 14). Hence, 

when applying a fixed electromagnetic radiation while increasing the external magnetic field from zero, at 

certain value, absorption will occur, i.e., the energy gap divided by Planck constant, between the up and 

down orientation will match with the applied electromagnetic radiation  

     

   

 
    (3.10)  

Here h is Planck constant, mS = 1 is the difference between spin quantum numbers for up and down 

orientation,        , where   is h/2, is the so-called g-factor and B0 is the strength of the external 

magnetic field. At that point absorption in the system dramatically increases what is detected in the ESR 

experiment as the absorbed microwave power. The obtained ESR spectrum contains lots of information. For 

instance, the position of the resonance frequency (g-factor) indicates the strength of the local magnetic 

fields at the spin position and thus helps to identify the species of the magnetic ions, to which resonating 

magnetic moments correspond. The width of the spectrum is associated with the spin-spin and spin-lattice 

relaxation processes, while the intensity of the signal depends on the number of resonating magnetic 

moments as well as probability for the excited transitions. Finally, the complete shape of the spectrum 

(distribution of resonating frequencies) holds information about the on-site magnetic anisotropies as well as 

the nature of the relaxation processes etc. Much more about the strength of the spin-spin and spin-lattice 

coupling, as well as magnetic anisotropies can be learned from temperature and angular dependences of 

these ESR spectral parameters. 

3.1.1.1 Exchange narrowing of the absorption spectra 

In this section we focus on the effects of the exchange interaction J on the ESR spectrum. For electron spin 

the correlation time c is determined by co called exchange frequency e, i.e.,            , since in the 

interaction picture the anisotropic Hamiltonian H’ (equation 3.5) is modulated by the isotropic exchange 

interaction. As the exchange coupling constant in principle spans over a large interval of possible values, it is 

worth testing two limiting cases of the magnitude of the electron correlation time with respect to the 

parameter t describing the decay of the relaxation function. In the case when the spin correlation function 

decays slowly (t << c) the spin correlation function can be replaced by the second moment of the absorption 

spectrum 
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                                   (3.11)  

which yields a Gaussian-shaped relaxation function and consequently also Gaussian profile of the absorption 

spectrum. The peak-to-peak linewidth of the derivative ESR spectrum is in this case given by 

    
  

 

   
     (3.12)  

In the second limiting case, usually encountered in real systems, the spins fluctuate very rapidly (t >> c) due 

to large exchange coupling constant with respect to the observed linewidths. The integral defining the 

relaxation function in equation 3.6 can then be approximated by 

            
 

 

               
    

   

 

          
    

   

 

   
 

 
         (3.13)  

which sets the relaxation function as an exponentially decaying function. The Fourier transform 

consequently yields the Lorentzian lineshape of the absorption spectrum with the peak-to-peak linewidth 

    
   

 

 

 

    
      

 

 

 

   

  

 
  (3.14)  

It should be stressed that the Lorentzian shape is expected for frequencies when ( – 0) << e, or 

equivalently for magnetic fields (Β – Β0) <<        , while the decay is faster in the tails of the spectrum, 

since it is determined by the relaxation function time dependence around t = 0 (41). This fact ensures finite 

values of the second moment, contrary to the second moment of the purely Lorentzian line that diverges. 

The second aspect to be highlighted is the occurrence of the exchange narrowing in the case of rapid 

electronic spin fluctuations. Namely, a comparison of equations 3.12 and 3.14 clearly demonstrates that the 

Lorentzian linewidth is suppressed with respect to the Gaussian one by approximately the factor of      . 

However, for broad lines (with the peak-to-peak width of the order of the resonance field B0), both circular 

polarizations of the microwave irradiation, determining the resonances at ±B0 (equation 3.6), have to be 

taken into account (69), 

  

  
 

 

  
 
           

       
     

 
           

       
     

   (3.15)  

In this expression, the parameter B denotes a linewidth, while r represents the amount of dispersion 

admixed into an absorption spectrum. In insulating materials, one usually encounters pure absorption 

Lorentzian lines (r = 0). However, asymmetric dispersive Lorentzians, i.e., Dysonian-like line shapes, can be 

observed if the dispersion contribution is admixed with the absorption. This is in general expected when the 

magnetic anisotropy of a particular system results in very broad ESR lines (of the order of Bres) due to 

nondiagonal terms of the susceptibility tensor (70). Alternatively, Dysonian line shapes are in general 

observed in metallic samples due to a skin effect (71). 

3.1.1.2 Magnetic resonance in the vicinity of critical points 

In principle, there are three different temperature intervals of interest, when performing magnetic 

resonance absorption experiments on magnetic solids, which undergo a transition to a magnetically ordered 

state below some critical temperature TC. Namely, the high-temperature interval (T >> TC) where only short-

range correlations potentially play a role, the temperatures just above the critical temperature (T ≥ TC ), 

where precursor effects of long-range ordering are present, and temperatures below TC, for which 
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appreciable internal magnetic field due to magnetic ordering are crucial for understanding the resonant 

spectra.  

In the critical region there is an intrinsic difference between ferromagnetic and antiferromagnetic materials. 

That is, in ferromagnets the contribution of the spin correlations at wave-vector    = 0 gets critically 

enhanced while these correlations are diminished in antiferromagnets. In fact, near the antiferromagnetic 

transition, staggered (alternating) correlations     
     

   at wave-vector     tend to dominate at zone centre. 

If looked at in the light of a snapshot picture, increasing clusters of ordered spins begin appearing, when 

approaching the transition point of the system. Also the mean-squared amplitudes of the staggered Fourier 

component of the magnetic moment distribution increases, which can be properly accounted for by the 

wave-length-dependent static susceptibility (  , t = 0). On the other hand, also the dynamical aspect of the 

critical fluctuations is important. Namely, when approaching the transition temperature the average lifetime 

of a cluster of ordered spins will be increased. This effect, called the critical slowing-down of spin 

fluctuations, is expressed by the decrease of the relaxation rate (  , T) of the spin correlation functions and, 

in effect, adds to the increased fluctuation amplitudes. Both the static and the dynamic effect contribute to a 

significant line broadening of the ESR absorption spectra in the vicinity of the phase-transition temperature, 

thereby according to reference (72) yielding the linewidth 

   
    

     
  

      
    (3.16)  

where  is the correlation length. 

3.1.1.3 Experimental apparatus 

The typical X-band ( = 9.4 GHz) ESR spectrometer consists of an electromagnet with power supplies to 

generate and modulate a uniform magnetic field of several hundred mT (for X-band typically up to 1 T), as 

well as the components that generate and detect microwave power.  

A static magnetic field is provided by an electromagnet with a current-regulated power supply. A 

homogeneous field is required for best results. A Hall probe, driven from a stable constant-current power 

system, with a digital multimeter reading the Hall voltage, is used to measure the value of the magnetic field 

between the poles of the magnet. The microwave system consists of a microwave power supply which uses a 

clystron. The ouput of the microwave power (several mw) supply is connected via rectangular waveguide (X-

band 9.4 GHz) to a resonant cavity. The samples to be investigated are mounted in the middle of the cavity, 

where magnetic component of the microwave power has a maximum and is oriented perpendicular to the 

static field. A microwave diode, which detects the mw resides inside the same box as the power supply. The 

higher the quality of the resonant cavity the greater is the microwave field that can be obtained on the 

sample.  The detection in X-band (9.4 GHz) is typically based on a detection of absorption of the microwave 

power. To minimize the noise from the mw diode in steady state measurements, a magnetic field 

modulation scheme with phase sensitive detection is usually employed. As a result, the detected signal 

appears as a first derivative (Figure 15b). The usually used modulation field has a modulation frequency of 

80 kHz and the amplitude up to 0.5 mT. 

On the other hand, measurements at higher frequencies (up to several hundreds of GHz) are usually 

associated with high magnetic fields (several Tesla). Therefore, superconducting magnets are used, which 

are for convenience typically capable of sweeping the magnetic field. For instance at Magnetic Resonance 

Lab at National High Magnetic Field Laboratory, Florida, United States of America, one can reach frequencies 
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up to 660 GHz and magnetic fields of 15 T. Additionally, the detection technique is a bit different, since here 

no cavities are used, but simply intensity of the microwave beam, lighting through the sample, is measured. 

a         b  

Figure 15: (a) ESR X-band experimental setup. (b) Effect of the modulatoin field on the detected signal. 

3.1.2 Nuclear magnetic and quadrupolar resonance 

In addition to the electron magnetic resonance, nuclear magnetic resonance (NMR) is also very useful local 

probe for studies of the electronic properties of solids. It, strongest point is that the nuclear resonance is 

being detected instead of electronic one, hence this experimental method provide a probe that is only 

weakly coupled to the electronic system, allowing for precise determination of the local magnetic fields 

present in the material under investigation. Because of the effectively weak coupling, which is usually much 

weaker than the leading Zeeman term, the NMR results are significantly easier to interpret compared to ESR. 

Hence one gets additional information to that obtained by ESR, where electrons directly serve as 

experimental probes. Nuclear magnetic resonance is sensitive to the time-averaged local magnetic fields 

through the position of the absorption lines as well as to certain spectral components of fluctuating fields, 

which affect the linewidth and the relaxation times of nuclei. We note that in contrast to ESR, we are not 

limited to transition metals, rare earths or other paramagnetic ions, but we can in principle probe any nuclei 

with reasonably large gyromagnetic ratio. 

3.1.2.1 Origins of internal fields producing the frequency shifts of NMR spectra 

The NMR spectrum of a certain species of nuclei in a material is strongly dependent on the nature of the 

investigated compound, i.e., a considerable difference is observed between nonmagnetic (38), (73) and 

magnetic materials, which can also exhibit ferromagnetic (74) or antiferromagnetic order (75). For instance, 

in nonmagnetic solids relatively small corrections to the energy of a nucleus in the external magnetic field 

are expected  due to the dipolar field of other nuclei and atomic diamagnetism (tiny chemical shift of the 

resonant frequency). On the other hand, the electronic dipolar fields are several orders of magnitude larger 

than the corresponding nuclear fields, and the atomic hyperfine fields of magnetic ions are possibly even 106 

times larger. 

The internal fields at the nucleus, produced by the electronic spin moments, can be classified into three 

broad classes, depending on the nature of the atoms under investigation in the magnetic solid. In the first 

class of nuclei of nonmagnetic atoms, the main anisotropic addition to the Zeeman Hamiltonian    

            for the nuclei at site i with the nuclear gyromagnetic ratio  usually originates from the dipole 

interaction between the nuclear spin     and the average electronic spin moments of surrounding 

paramagnetic ions      . The static dipolar field Bd can be obtained from the dipolar Hamiltonian 
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 (3.17)  

when the time-averaged value of the electronic spin       is taken into account. In the equation 3.17 the 

summation extends over all magnetic sites j, which are at the distance ri,j from the nucleus. The static field is 

proportional to the time-average of the electronic magnetic moments and thus to the uniform 

magnetization of the system. In the paramagnetic phase, this interaction is nonzero only in the case of 

applied external magnetic field B0, which partially polarizes the electronic system. However, the dipolar 

magnetic field Bd and the external field are generally not parallel, due to the              term, which is even 

more pronounced if magnetic ordering sets in. 

The second group are nuclei of paramagnetic ions, which are subjected to the intense hyperfine fields that 

arise from the interaction of the nucleus with electrons within the same paramagnetic ions. In addition to 

the dipolar Hamiltonian (equation 3.17), anisotropy terms of the form 

  
  

              (3.18)  

determine the properties of NMR absorption of the nucleus at site i. The static hyperfine magnetic field 

                   is usually so intense that it produces large lineshifts or even makes the resonant 

absorption experimentally unobservable (75). In the one-electron theory the hyperfine interaction can be 

expressed in the following form (76) 

  
  

       

  
 
  

 
               

              

  
 

                 

     (3.19)  

The first term represents the Fermi contact interaction being nonzero only for s electrons, which have a 

nonzero probability of being found exactly at the point of the nucleus         > 0. In such case the last two 

terms are zero due to the spherical distribution of the electron density. These two terms are the orbital (L) 

and the spin dipole energy terms. For several electrons outside the closed shell the operators in equation 

3.19 are taken as the sum operators for the entire ion. However, this conventional one-electron theory has 

its shortcomings, as it cannot predict hyperfine fields for ions which have net spin, but have no unpaired s 

electrons. In fact, if an ion is in the s orbital state and has a net spin, the spin and the orbital dipole 

contributions will be zero, however, the ion can still have appreciable local fields arising from the Fermi 

contact term. In Mn2+ this hyperfine field can be of the order of 70 T (76). The many-electron contribution to 

the hyperfine coupling includes the polarization effect involving core electrons. Namely, the incompletely 

filled shell with L ≠ 0 distorts the closed shell and, in turn, causes an interaction with the nuclear magnetic 

moment (76). The calculation of the hyperfine tensor is thus far from being trivial, which is why it is usually 

taken phenomenologically as an anisotropic tensor and is not calculated from the first principles. 

The last class joins nuclei of partially magnetic ions. For such materials there is an appreciable overlap 

between the wave functions of electrons of nominally nonmagnetic ions and those wave functions of 

electrons from paramagnetic ions. As a consequence a space redistribution of electrons at the nonmagnetic 

sites appears. This can be explained in the light of the amount of covalency present in bonds as follows. To 

the extent that an orbital of the paramagnetic ion is mixed with an orbital of the diamagnetic ion in the 

bonding function, it is reduced in the antibonding function. This means that, to the degree that bonding 

occurs, the unpaired electron in the antibonding orbital has the character of the initial orbital of the 

diamagnetic ion. Consequently, an imbalance at nonmagnetic ion characteristic of the symmetry of its initial 

orbital occurs in the sense that the unpaired electron in the antibonding orbital, with spin parallel to that of 
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the paramagnetic ion, can produce its characteristic hyperfine field. This way even at ions with paired s 

electrons there can be significant hyperfine coupling of the Fermi contact type (77). The effective hyperfine 

interaction can be written for partially magnetic ions as a sum of transferred hyperfine contributions 

  
  

              
 

  (3.20)  

Here the sum runs over all the neighbouring paramagnetic sites j that affects the spatial distribution of 

electrons on the diamagnetic site i. From the size and the shape of the transferred hyperfine tensor      one 

can in principle deduce the orbital character and the extent of collaboration of the electrons from the 

diamagnetic species with the paramagnetic electrons in formation of the covalent bonding. 

As demonstrated in this section, the line position reveals information on the time-averaged value of the local 

fields. The resonance frequency strictly follows the temperature evolution of the averaged spin moment 

when the coupling constants (dipolar and hyperfine) are assumed to be temperature independent. This is 

frequency shift can be written as 

                                                         
 

   (3.21)  

where      is the resonating frequency due to     ,      is the static dipolar field of the surrounding ions,      

is the hyperfine coupling tensor between nuclei and the electron orbiting around the same nuclei j = i as well 

as electrons on the neighbouring paramagnetic j ≠ i. 

3.1.2.2 Quadrupolar interaction 

Another major source of anisotropy in the case when I ≥ 1 has to be introduced, i.e., the nuclear quadrupole 

interaction. This coupling arises from the interaction between nuclear quadrupole moment Q with the 

electric field gradient (EFG) tensor Vij existing at the nucleus and is described by the Hamiltonian (73) 

          
     

 

 
    

    
     (3.22)  

where                   , h is the Planck’s constant, and I2, IZ
2, I+ and I- are the nuclear spin operators. 

The above Hamiltonian is written in the principal frame of the EFG tensor with the principal values by 

convention taken as |Vzz| ≥ |Vyy| ≥ |Vxx|, while the asymmetry parameter is defined as = (Vxx – Vyy)/Vzz. 

In case of a weak quadrupole interaction compared to the applied magnetic field, Q <<L, for half-integer 

spins the central transition                is a delta-function at Larmor frequency L while the satellite 

lines appear as symmetrically displaced delta-functions with respect to the central line.  

On the other hand, when Q is comparable or even larger than L, the spectrum cannot be calculated by a 

simple perturbation theory. The complete Hamiltonian H = HZ + HQ, introducing, Zeeman as well as 

quadrupolar interactions, has to be taken into the account. The actual eigenstates of such a system are then 

obtained by diagonalization of H and differ from the standard        ,       , ... Moreover, in case of a 

strong EFG and reasonably large Q, magnetic resonance can be observed even in the absence of an external 

field. This phenomenon is called nuclear quadrupole resonance (NQR). 
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3.1.2.3 Calculations of the NMR/NQR spectra 

To obtain the correct spectral intensity, probability of a certain nuclear spin transition has to be considered. 

This probability is given by the square of the matrix element responsible for the transition between two 

states, 

                                    (3.23)  

For the abovementioned reason the heights of the satellite lines are suppressed with respect to the central 

line or can even be completely wiped out, especially if a distribution of the electric field gradient is present. 

Here we give show basic steps for the diagonalization of the nuclear spin Hamiltonian, which consists of 

Zeeman term, dipolar interaction with the surrounding electronic spins, transferred hyperfine coupling with 

the closest magnetic ions, and finally quadrupolar interaction. We neglect the ordinary hyperfine interaction, 

as we are interested in spectra of nonmagnetic nuclei.  

First of all, for a convenience, we rewrite the quadrupolar Hamiltonian (equation 3.22) written in the 

principal frame of the EFG tensor in to the form of the laboratory frame, where z-axis is oriented along the 

applied magnetic field and Vij now corresponds to the EFG tensor   components in the laboratory frame: 

   
  

        
       

                                           
         

     (3.24)  

where       ,             ,      

 
              . This means that when crystal is rotated Vij 

change as:  

            (3.25)  

where 

    

      

      

      

  (3.26)  

with                  is the EFG tensor written in the EFG principal axes system, and   is the appropriate 

rotation matrix. Next, we write the complete Zeeman term for a local field in the local frame: 

                         
 

 
     

  
     

                            
   

 
   (3.27)  

where first term corresponds to applied magnetic field     , the second to the transferred hyperfine coupling 

with the closest magnetic ions (j) and the last term to the dipolar interaction with the electronic spins (k) 

within a limiting distance (up to several tens of nm, depending on the magnitude of the magnetic moments). 

We stress that j runs only over the closest magnetic ions (typically j = 1), while for calculating the dipolar 

interaction with the satisfactory precision, one must take into the account all the spins within a few 

crystallographic unit cells, depending on their magnitude – meaning that k can easily be of the order of 100. 

Finally the complete H = HZ + HQ Hamiltonian can be diagonalized. This allows us to calculate the system’s 

eigenstates as well as the transition frequencies and their probabilities (equation 3.23). Since the relative 

orientations between the applied magnetic fields, dipolar field, and transferred hyperfine field change, one 

has to do the described procedure separately for each crystal orientation, when calculating angular 

dependences. 
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3.1.2.4 Relaxation processes 

As noted earlier, the observability of the nuclear magnetic resonance in magnetic material depends on the 

magnitude of certain spectral components of the fluctuating local fields or equivalently the fluctuating 

electron spin correlation functions. The amplitude of the fluctuations varies with the degree of order in the 

electronic system and is therefore quite temperature dependent. The general expressions for line 

broadening and spin-lattice relaxation, in the case of large exchange coupling, were derived by Moriya (78), 

using the Kubo-Tomita general theory of magnetic resonance. In principle, the general theory, presented in 

beginning of the section 3.1, applies also to the case of the nuclear magnetic resonance. However, for clarity 

we will speak here in the language of local fields arising from the interaction of the nucleus with the 

surrounding electrons instead of magnetizations.  

The fluctuations in the local field are defined as                          . As already explained, the time-

averaged field contributes to the shift of the resonance frequency while the fluctuations, on the other hand, 

are themselves responsible for finite homogeneous linewidth. As it was already presented in equation 3.7, a 

normalized absorption line in NMR experiments can be expressed in terms of the relaxation function of 

transverse nuclear magnetization M(t), with angular Larmor frequency being                    . The 

relaxation function      is related to the correlation function (79) 

                       
 

 
                      (3.28)  

through the familiar expression given by equation 3.6. By agreement the index z again denotes the direction 

of the external magnetic field and {AB} stands for the symmetrised product of two operators. Once again, as 

with ESR (section 3.1.1.1), if the electron correlation time is small compared to the spin-spin relaxation time, 

the exponent of the relaxation function will be a linear function of time. Lorentzian lineshape is then 

expected. The expression for the spin-spin relaxation time, which is related to the full width at half height 

(FWHH) of the absorption spectrum in the frequency units as  = 1/(T2) in the picture of the homogeneous 

broadening, can be derived to have the following appearance 

 

  
                    

 

 
                                    

 

 

  (3.29)  

Introducing the spectral density of the fluctuating local field 

       
 

 
                        

 

  

  (3.30)  

the equation (3.29) can be rewritten as 

 

  
 

   

 
        

 

 
        

 

 
          (3.31)  

The first term represents contributions, arising from the secular part of the perturbing Hamiltonian, defining 

the local field while the transverse correlation functions represent the nonsecular part. The spin-spin 

relaxation thus probes dynamic as well as static components of the local magnetic fields. The spin-lattice 

relaxation, on the other hand, in governed solely by the transverse fluctuations 

 

  
                                         

 

 

 
   

 
                   (3.32)  
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Consequently, it is affected only by the fluctuations of the local magnetic fields at the Larmor frequency. 

Since electron correlations normally persist for much shorter times than the nuclear Larmor period, the 

nuclear relaxation times are simply determined by the spectral density of fluctuating field at zero frequency. 

The magnetic field fluctuations are of course correlated to electronic spin fluctuations through equations 

3.17-3.20. To be precise, if we write a coupling term between a nuclear spin     at site i and the ionic spin     at 

site j in the general form (accounting for the hyperfine as well as the dipolar coupling) 

  
  

              
 

 (3.33)  

and identify electron spin fluctuations from the equation spin polarization as fluctuations              

    , the expressions for the nuclear relaxation times governed by the coupling to the system of paramagnetic 

electrons can be transformed into the following general form 

 

  
 

 

  
        

   
      

   
      

         
   

     
       

           

      

  
 

  

  

 

  
 

 

  
         

   
      

   
 

      

 

  

 
 

 
          

   
      

   
      

         
   

      
       

               

(3.34)  

The temperature dependence of the NMR relaxation times in magnetic solids can be in principle obtained by 

calculating the time dependence of the electron spin correlation functions. In this respect, the NMR analysis 

demands less theoretical efforts than ESR. This is due to the fact that nuclear resonance strictly samples local 

properties in magnetic solids. That is, a nucleus at a particular site resonates independently of other nuclei, 

which is due to the linearity of the nuclear perturbing Hamiltonian in the electronic spin operators. Its 

resonance spectrum is determined by electronic fluctuations and correlations, sensed at a particular wave-

vector (79). It is the same argument that explains why only the knowledge of two-spin correlation functions 

is needed in NMR, while ESR in its essence requires the information about the four-spin correlation 

functions. In the above-presented way also the nuclei can serve as an experimental probe for detecting the 

temperature evolution of the spin correlations in the spin system of the paramagnetic electrons. 

At the end of this chapter, few words on the effect of the nonmagnetic mechanism (i.e., the quadrupole 

coupling) on the nuclear relaxation are in place. The influence of this interaction on the shift of the 

resonance line has already been highlighted from the static point of view. However, one has to include 

dynamical aspect for this coupling to be able to induce relaxation. In liquids such feature is provided by rapid 

reorientations of molecules, which produces fluctuations of local electric field gradients. On the other hand, 

for the quadrupole coupling to be effective in inducing relaxation in solids phonons have to be taken into 

account. Such lattice vibrations modulate EFG tensors. It is well established that the spin-lattice relaxation 

times, for instance, should scale linearly with the temperature if direct phonon processes are dominant, 

which account for the single phonon creation of annihilation processes. On the other hand, if the phonons 

are inelasticaly scattered on the spin system as in the case of the Raman processes, the increase of the 

relaxation rate is much steeper (T2 to T7 depending on the temperature with respect to the Debye 

temperature) (73). 
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3.1.2.5 NMR/NQR signal acquisition  

There are two basic concepts of NMR signal acquisition, the “continues wave” spectroscopy, which is in 

principle very similar to the ESR technique, and the so called “Fourier transform” spectroscopy. Nowadays, 

most of NMR the research is based on the Fourier transform technique, which will be presented below 

(Figure 16). 

A short radiofrequency square pulse of a given carrier frequency contains a range of frequencies centred 

about the carrier frequency, with the range of excitation (bandwidth) being inversely proportional to the 

pulse duration. The restricted range of the NMR frequencies made it relatively easy to use short (millisecond 

to microsecond) radiofrequency pulses to excite the entire NMR spectrum. Applying such a pulse to a set of 

nuclear spins simultaneously excites all the single-quantum NMR transitions. In terms of the net 

magnetization vector, this corresponds to tilting the magnetization vector away from its equilibrium position 

(aligned along the external magnetic field). The out-of-equilibrium magnetization vector precesses about the 

external magnetic field vector at the NMR frequency of the spins. This oscillating magnetization vector 

induces a current in a nearby pickup coil, creating an electrical signal oscillating at the NMR frequency. This 

signal is known as the free induction decay and contains the vector-sum of the NMR responses from all the 

excited spins. Finally, in order to obtain the frequency-domain NMR spectrum (NMR absorption intensity vs. 

NMR frequency) this time-domain signal (intensity vs. time) must be Fourier transformed. 

 

Figure 16: Schematic plot of the “Fourier transform” NMR spectroscopy. The basic acquisition process can be described with a one 
pulse sequence, which consists of interpulse delay, radiofrequency pulse, dead time and acquisition time. The pulse tilts the spins 
away from equilibrium position, the dead time is needed for the electronics to stabilize, the acquisition time is the time when 
signal is recorded, and the interpulse delay serves to allow the spin system to relax back towards equilibrium. Finally, the signal is 
transformed by Fourier transformation to obtain frequency-domain NMR spectrum. 

3.2 Specific heat 
One of the most important thermodynamic properties of the magnetic system is its specific heat. In 

particular, specific heat is very sensitive to any phase transition, whether it is structural or purely magnetic, 

since such thermal effects typically manifests as anomalies in the specific heat. Moreover, other magnetic 

contributions can be noticed, as for instance certain single-ion anisotropies, magnetic excitations, etc. This is 

because all these phenomena are associated with the decrease or increase of the system’s entropy. But first 

of all, in order to isolate the magnetic part, lattice contribution has to be discussed. 

3.2.1 Lattice heat capacity 

Every physical substance whether it contains magnetic ions or not, exhibit a lattice heat capacity, which 

accounts for the unavoidable presence of the lattice vibrations. This is also the basis for the Debye theory of 

lattice heat capacity. With decreasing temperature, lattice vibrations relaxes, resulting in a smooth 

monotonic reduction of the lattice heat capacity, which eventual achieves zero at T = 0 K. It is this fact that 

causes so much interest to investigate magnetic systems at low temperatures, for then magnetic 

contribution constitutes a much larger fraction of the whole.  

FT 

I 

acquisition time dead time 

   interpulse delay pulse 
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In a Debye model, the lattice vibrations (phonons) are assumed to occupy the 3N lowest energies of a 

harmonic oscillator. As a result, the Debye lattice specific heat is written as (80): 

                
                

    

 

  (3.35)  

where          and             is called Debye temperature (kB is the Boltzmann constant). For 

temperatures up to D/10, this can be relatively well approximated as Clatt  (T/D)3, whereas for higher 

temperatures one often considers also corrections with higher odd powers. 

3.2.2 Magnetic contributions to the heat capacity 

In the first step, magnetic heat capacity can be divided in to two parts. Above the magnetic transition 

temperature TN,  a high-temperature series expansion of exchange-coupled spin contribution to the entropy 

has to be considered, which describes the increase in the heat capacity due to short-range magnetic 

correlations far above TN and is typically described with (80), (81) 

             (3.36)  

where A > 0. On the other hand, below TN, we have a contribution of the long-range ordering effects Clong. 

In case when lattice specific heat follows T 3 law in the measured temperature region, the total specific heat 

above the TN can be described as Clatt + Cshort = BT 3 + AT –2. This way an approximate estimation for Clatt  BT 3 

is obtained. However, to be more precise, one needs to consider the complete expression for Clatt (equation 

3.35). It is even more convenient if one can measure the specific heat of an isostructural nonmagnetic 

compound, which should give a very good estimation for Clatt. Essentially, after subtracting the lattice 

contribution we are left with the magnetic contribution alone. 

Analyzing Cmag at very low temperatures using the spinwave theory can determine if the long-range magnetic 

ordering of a target material is ferromagnetic or antiferromagnetic. The specific heat due to the spin-wave 

excitation, CSW, is expressed by (81), (82): 

          (3.37)  

where d stands for the dimensionality of the magnetic lattice and n the exponent in the dispersion 

relationship: n = 1 for antiferromagnets and n = 2 for ferromagnets. This expression can be further improved 

by considering that long-wavelength spin waves are excited at low temperatures, and hydrodynamic 

Heisenberg spin-wave theory (83) can be applied assuming also the field dependence of the spin-wave gap  

(82): 

                          (3.38)  

where the integral                                                     
 

           
,  and 

constant BSW depends on the spin-wave stiffness and molar volume of the compound. 

Finally, the magnetic transition entropy, Smag, is obtained directly from Cmag after calculating the integral 

(84) 

                 
 

 

  (3.39)  
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The integration over the complete temperature interval should yield Smag = R ln(2S+1), where R is the gas 

constant and S is the electron spin, which corresponds to entropy difference between totally disordered 

spins, at high temperatures, and perfectly ordered spins, at T = 0 K. 

Moreover, from the temperature dependence of Smag the dimensionality of magnetic ordering can be 

determined, i.e., whether the system has two or three-dimensional (2D or 3D) magnetic lattice. When the 

value of Smag is divided into two terms, such as the magnetic entropy values below TN (Smag-lower) and above 

TN (Smag-upper), the ratio of Smag-lower/Smag for the magnetic lattices of the 3D Ising, 2D Ising, and 3D 

Heisenberg types are 81 %, 44 %, and 62 %, respectively (81). This is due to the presence of the short-range 

ordering effects above TN, i.e., the lower is the dimensionality of the system further above TN short-range 

correlations develop, resulting in a significant Smag-upper. 

3.2.3 Data acquisition  

The specific heat measurements of small samples are typically performed on a so called physical property 

measurement system (PPMS), which measure the heat capacity at constant pressure 

    
  

  
 
 
  (3.40)  

The machine (Figure 17a) controls the heat added and removed from a sample while monitoring the 

resulting change in temperature. The measurements are acquired by so called thermal relaxation process is 

illustrated on Figure 17b. 

a   b  

Figure 17: (a) PPMS setup for specific heat measurements, and (b) signal acquired by thermal relaxation method. 

The simplest model to analyse the thermal relaxation data assumes that the sample and the sample platform 

are in good thermal contact with each other and are at the same temperature. Within this model the 

temperature of the platform as a function of a time obeys the equation 

       
  

  
                 (3.41)  

where Ctotal is the heat capacity of the sample and platform, Kw is the thermal conductance of the supporting 

wires, Tb is the temperature of the thermal bath, and P(t) is the power applied by the heater. The solution of 

this equation is given by exponential functions with a characteristic time-constant equal to Ctotal/Kw. 

3.3 Magnetization measurements 
There are quite a few methods to measure the sample’s magnetization. However, for measurements in 

magnetic field up to 12 T the most commonly employed technique, which is also the most sensitive, uses a 

superconducting quantum interference device (SQUID). On the other hand, in order to measure 

magnetization in high magnetic fields, i.e., above the critical field of the SQUID superconductor (typically 

above 12 T), magnetic torque measurements are a very popular choice. 
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3.3.1 Superconducting quantum interference device  

Nowadays, the most commonly used superconducting quantum interference device (SQUID) has two 

Josephson junctions (two superconductors linked by a non-conducting barrier) in parallel in a 

superconducting loop, which makes the Josephson effect possible (Figure 18). In the absence of any external 

magnetic field, the input current I is split equally into the two branches. Now, consider a small amount of 

applied external magnetic flux. This induces screening current IS that generates the magnetic field to cancel 

the applied flux. As a result, the current in one of the branches of the superconducting loop is in the 

direction of I, and is equal to I/2 + IS/2 and in the second branch is in the opposite direction of I and is equal 

to I/2 − IS/2. As soon as the current in any one of the branches exceeds the critical current for the Josephson 

junction, the superconducting ring becomes resistive and a voltage appears across the junction. It is known 

that the flux enclosed by the superconducting loop must be an integer number of the flux quanta 0. Hence 

if the external flux exceeds 0/2, the SQUID instead of screening the flux, energetically prefers to increase it 

to 0. The screening current now flows in the opposite direction. Thus the screening current changes 

direction every time the flux increases by half integer multiples of 0, what makes the critical current IC 

oscillate as a function of the applied flux. If the input current is more than IC, then the SQUID always 

operates in the resistive mode and the voltage in this case is a function of the applied magnetic field and the 

period equal to 0 (85) (Figure 18). As a result, the increase of the magnetic field can be monitored by 

counting the oscillations of the SQUID voltage. 

 

Figure 18: Basic design of SQUID magnetometer (86).  

3.3.2 Magnetic torque measurements 

Magnetic torque measurements are particularly useful for single crystal samples, where standard SQUID 

technique fails, e.g. in strong applied magnetic fields. The general principle behind the magnetic torque 

measurements is that a sample mounted on a flexible beam (cantilever) will respond to the application of a 

quasi-static magnetic field by experiencing force and torque, which deflects the beam. This technique was 

developed by Brooks et al. (87) at MIT in 1980s. The magnitude of the force    and torque    are related to 

the samples magnetization      and applied magnetic field        in the following way 

       ⋅
    

  
  (3.42)  
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             (3.43)  

The deflection of the beam is proportional to    and can be measured in a number of ways: (i) capacitively 

(88), (ii) piezo-resistively (89), (iii) optically (e.g. via diffraction grading), etc. If the magnetic moment of a 

sample is anisotropic, then measurements of the torque are more sensitive than force measurements in the 

experimentally achievable field gradients. Hence, measurements are typically performed in a zero-field 

gradient, which further suppress induced magnetic force and promotes the torque response. Sensitivity of 

such torque magnetometer depends on the stiffness of the flexible beam material, the sensitivity of the 

cantilever to temperature fluctuations and mechanical vibrations, the quality of the measuring 

instrumentation, and the magnitude of the applied magnetic field. Typical sensitivities for magnetic moment 

range from 10–10 Am2 to 10–12 Am2 for a torque measured at 20 T. Our experiments were performed at 

Grenoble High Magnetic Field Laboratory (GHMFL), France, where the cantilever is metallic and has lateral 

dimensions of approximately 3 × 4 mm2, while it is thinner than 0.1 mm. It is mounted on a fulcrum above 

the conductive plate, which serves as the opposite site of the capacitor (Figure 19). 

 

Figure 19: Here, basic parts of the cantilever magnetometer are shown. The sample is attached to the flexible beam (typically with 
varnish or vacuum grease). The flexible plate is metallic and typically thinner than 0.1 mm. The conductive plate serves as the 
opposite part of the capacitor, and is permanently attached to the header, which is typically made of fibreglass. The fulcrum is 
either part of a flexible plate or a part of the header. 

The interpretation of the data is more or less straight forward, since the measured magnetic torque directly 

reflects the behaviour of the magnetization. However, the determination of the exact magnetization is 

rather tricky. First, in order to dismount the sample, the cantilever has to be dismounted as well. Since the 

consecutive mounting is always done in a slightly different manner, the measurements are not completely 

repeatable and, therefore, making the exact calibration of the system’s sensitivity unfeasible. Second, when 

magnetic field is applied, the cantilever tilts due to the resulting magnetic torque. As the actual torque is 

being dependent on the tilting angle, the estimation of the exact value of magnetization is rather difficult. 

3.4 Magnetic neutron scattering 
The main advantage for the use of neutrons to investigate magnetic properties is that they do not carry the 

electric charge, while they have an intrinsic magnetic moment. Therefore they interact only with magnetic 

moments (via magnetic dipole-dipole interaction) and atoms’ nuclei (via contact interaction), avoiding the 

strong electromagnetic interaction with surrounding charges. As a consequence they can easily penetrate 

the sample and form a scattering pattern that is a combination of both, nuclear as well as magnetic, 

contributions. Hence we get information about the crystal and magnetic structure simultaneously. 

3.4.1 Neutron sources 

There are two methods currently employed to generate neutrons for use in scattering experiments, each 

with its pros and cons. The first method is nuclear fission, occurring in a traditional nuclear reactor with 

uranium described with the following equation:  

sample 

felxible beam 

conductive plate 

isolating header 

fulcrum 
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                           (3.44)  

where the kinetic energy (200 MeV) is distributed among the resulting particles so that the total momentum 

is conserved. A reactor at a neutron scattering facility would be designed to produce an excess of neutrons 

beyond that required to maintain the chain reaction, and it is these excess neutrons which are used for 

scattering. The main advantage of a reactor source is that it produces a high flux of neutrons at a steady rate. 

The other method of generating neutrons for scattering is with a spallation source. Accelerated protons 

strike a heavy metal target, and the impact of the proton beam triggers a nuclear reaction: 

                            (3.45)  

i.e., after each impact of proton 20 to 30 neutrons are expelled. The spallation process is the excitation and 

neutron emission of the target until it achieves a stable nuclear state. Such a source typically produces a 

much lower flux of neutrons than a reactor. 

3.4.2 Neutron detection 

The main advantage of neutrons that they interact rather weakly with matter, on the other hand, present a 

problem when it comes to detecting scattered neutrons. Neutrons are not charged so they cannot be 

detected using radiation detectors which rely on direct gas ionisation. Instead the neutrons need to cause 

some other atom to emit charged particles which will ionise a gas and therefore be electronically detectable. 

The standard way of doing this is to use a chamber filled with 3He gas, which then undergoes the following 

reaction: 

     
      

            (3.46)  

so that p, with kinetic energy of 0.77 MeV, ionise the gas and give rise to a signal, proportional its initial 

kinetic energy, which can be distinguished from signals at different energies arising from gamma rays 

entering the detector, for example. The 3H nucleus eventually decays to form another 3He nucleus and an 

electron, so the supply of helium in the detector does not need to be replenished. 

It is important to know the flux of neutrons incident on the sample, especially given that this will vary 

depending on the value of the incident energy. Therefore, the incident flux is measured using a monitor, 

which is simply a rather inefficient neutron detector. Additionally, the monitor's efficiency is inversely 

proportional to the incident neutron wavevector ki. Hence, when the final wavevector kf is fixed, the 

normalization of detector counts to the monitor count rate already includes the correction for the kf/ki term 

in equation 3.68.  

3.4.3 Neutron scattering cross sections 

The derivation of the following results can be found in more detail in, for example, the book by Squires (90). 

Here we review only the important results which are stated without their associated proofs.  

 

Figure 20: The scattering triangle, relating the incident and final wavevectors to the scattering wavevector. 

     

     

    2 
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A neutron scattering event must conserve both total momentum and energy, and these simple rules provide 

a starting point for the theory of neutron scattering. Energy conservation gives us 

      
 

   
     

      
       (3.47)  

where Ei and Ef are respectively the incident and final energies of the neutron,      and      are the incident and 

final neutron wavevectors and    is the energy of an excitation in the sample. Meanwhile momentum 

conservation gives us 

               (3.48)  

where     is the scattering wavevector. The process is shown schematically in Figure 20. In practice, vectors  

     and      are determined by monochromators – large single crystals, where a particular Bragg diffraction is 

chosen, while     is assumed from equation 3.48. Taking together equations 3.47 and 3.48 allows us to 

calculate from a given scattering event the wavevector and energy of the excitations (or static order if    is 

zero) in the sample.  

The quantity measured during a neutron scattering experiment is the double differential cross-section: 

   

     
 

 
                                                               
                                                            

 

       
  

(3.49)  

where the total incident neutron flux is given by . For elastic scattering we do not include the dE term in 

the denominator, i.e. we are only interested in the differential cross-section  
  

  
 . This is justified because 

the probability for elastic scattering event is several orders of maximum greater compared to inelastic one, 

which renders the differentiation with respect to energy redundant. So in both nuclear and magnetic elastic 

scattering it is  
  

  
  that is of interest. 

3.4.3.1 Nuclear elastic scattering 

The coherent nuclear elastic scattering cross section is given by 

  

  
  

     

  
         

 
  (3.50)  

where N is the number of unit cells in the crystal, V0 is the volume of the unit cell and FN is the nuclear 

structure factor given as 

              
        

 
             (3.51)  

where the sum runs over all atoms j,     is the position of the j-th atom, and      is the nuclear scattering length 

of the j-th atom. The Debye-Waller factor Wj for the j-th atom takes into account that atoms are not frozen 

to their lattice sites, but rather they undergo a certain amount of thermal motion about an equilibrium 

position. In other words, with increasing temperature the thermal motion increases, and consequently 

reduces the intensity of the Bragg peaks, which is parameterised by the Debye-Waller factor. For a Bravais 

crystal the Debye-Waller factor is defined as 

          
 

 
              

 
   (3.52)  

where         is the thermal displacement of atom j from its equilibrium position. 



41 

Note that the cross section stated in equation 3.50 is that for coherent nuclear scattering. There is also an 

incoherent cross section that gives rise to an isotropic background scattering, which must be subtracted 

from any data before analysis is performed. 

3.4.3.2 Magnetic elastic scattering 

Let us now consider the scattering of neutrons by magnetic interactions. Neutrons have a magnetic moment 

             (3.53)  

where N is the nuclear magneton, gn = 1.913, and    is the Pauli spin operator with values ±1. The magnetic 

interaction potential operator         between neutrons and the local magnetic field         in a material (e.g. 

resulting local magnetic field from magnetic moments in the lattice) is given by 

                     (3.54)  

However, the cross section must contain terms which are functions of wavevector     rather than spatial 

coordinate   , so the Fourier transforms,                             and                            , are used: 

                       (3.55)  

Now we want to expand the expression for                 , considering that the magnetic vector potential 

      , which gives rise to the magnetic field, results from a single unpaired electron: 

       
  

  

      

  
  (3.56)  

Here    is a unit vector in the direction of the vector   , where the latter defines the distance from the 

magnetic moment    . Taking into the account also vector algebra explained in reference (91),         can be 

finally written as 

   
      

    
 

   
                        (3.57)  

Eventually we can rewrite the equation 3.55 as 

                            (3.58)  

where            is the component of the electron's magnetic moment (due to spin and orbital contributions) 

perpendicular to the scattering wavevector, such that 

                             (3.59)  

where    is a unit vector pointing in the direction of the scattering wavevector    . 

We must now consider the implications of the fact that the neutrons, which are magnetically scattered by 

electrons, will not necessarily consist of a spherical wave. So to formulate scattering cross sections, which 

assume that the incident and scattered beams are plane-waves, a correction factor must be applied. In order 

to avoid the complicated form for the magnetisation           in equation 3.59, we make the dipole 

approximation, which enables the use of the dipole moment of the scattering electrons    instead. Assuming 

also that for a 3d ion the orbital angular momentum L is often quenched, making the total angular 

momentum J not a good quantum number, magnetisation can be written as 
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                                 (3.60)  

where    is the spin quantum number, and        is the magnetic form factor. If we denote the normalised 

spin density on an atom by       , then the form factor is defined, for the spin-only case, as the Fourier 

transform of        (92), 

                            (3.61)  

The derivation of the explicit form of the magnetic form factor        is rather complicated and is omitted 

here for brevity. For a full derivation see the work of Freeman (93). However,        for a pure (x2 – y2) orbital 

can be approximated analytically using Bessel functions as (94)  

                 
 

 
                    

 

  
           

 

  
                 (3.62)  

Here  is the angle between the scattering wavevector and the axis perpendicular to the (x2 – y2) orbital 

plane (z axis), while the expectation values of the Bessel functions are approximated in terms of sums of 

exponentials with suitable coefficients (91) as 

                                

                                      
(3.63)  

Here s is defined as 

  
     

 
 

     

  
  (3.64)  

where s is the Bragg angle at the sample, and  is the wavelength of the incident neutrons. 

Note that for a spherical charge density (i.e. L = 0, so spin-only) equation 3.61 simplifies considerably to 

      
         

            (3.65)  

For magnetic elastic scattering: 

  

  
  

     

    
 
    
 

 
 

               
                      

  

 (3.66)  

where N is the number of magnetic unit cells, Vmag is the volume of the magnetic unit cell, r0 = 2.8 × 10-15 m is 

the classical electron radius, the sum over  and  is a sum over all combinations of two Cartesian axes (i.e. 

xx, xy, xz,...),     is the  component of   , and  is the Kronecker delta.           is the  component of the 

magnetic unit cell structure factor, given by 

             
   

  
   

                    

 
  (3.67)  

where the sum runs over all atoms,   
   

 is the  component of the magnetic moment of the j-th atom, and 

  
   

 is the  component of the magnetic form factor of the j-th atom.  
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3.4.3.3 Magnetic inelastic scattering 

Let us consider now the case of an inelastic scattering process, i.e. one in which the neutron gains or loses 

energy during the scattering process. The cross section for magnetic inelastic scattering, in the dipole 

approximation for the case of spin-only scattering, is given by 

   

     
  

    
 

 
 

                  
  

  
              

         

  

  (3.68)  

where S are the space and time Fourier transforms of the time dependent spin-spin correlation functions 

           
 

   
                           

       
       

    

 

  

  (3.69)  

where    
     is the -component of the spin at site j at time t, and     denotes an average over the initial 

states of the system. This expression can be considerably simplified if we consider a system where the 

excitations are out of the ground state only. (Strictly speaking this means a system is at zero temperature, 

however, for non-zero temperatures the described simplification is still a good approximation provided that 

the excited state lies at energy greater than kBT above the ground state.) The ground state has wave function 
     and energy E0, and the spin-spin correlation function is given by 

                           
 
           

 
  (3.70)  

where the sum is over all eigenstates      of the final state of the system with energy   .         is the Fourier 

transform of the -component of the spin   
 . 

3.4.4 Polarisation analysis 

Spin-flip (SF) refers to when the spin state of the neutron is flipped from up to down, or vice versa, and non-

spin-flip (NSF) refers to when the spin state of the neutron remains unchanged during scattering. In general 

the scattering cross section is given by 

   

     
                 

 
  (3.71)  

where the initial and final neutron states are labelled by their wavevectors ki and kf, and their spin states Si 

and Sf respectively.    is the scattering potential, which contains contributions from both, nuclear and 

magnetic potentials. 

The coherent nuclear cross section is proportional to 

         
                           (3.72)  

where           for spin-flip (SF) scattering        , or           for non-spin-flip (NSF) scattering 

       . Therefore all coherent nuclear scattering is in the non-spin-flip channel.  

Recall equation 3.58, which gives the Fourier transform of the magnetic scattering potential. Writing out the 

dot product explicitly 

              
      

 
  (3.73)  
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We define the quantisation direction as z and calculate the matrix elements involving          for the various 

different spin-flip states as follows. 

Table 1: The matrix elements for different polarisation scattering events. 

Transition  Matrix element 

                              
       

                              
       

                              
          

 
      

                              
          

 
      

 

The equations in Table 1 allow us to determine which component of the magnetic scattering can be 

observed with a given flipper channel and polarisation direction. These rules can be summarised as follows: 

1. No component of spin parallel to     may be detected. 

2. In the SF channel only those components of spin perpendicular to the polarisation    , subject to (1), may 

be detected. 

3. In the NSF channel only those components of spin parallel to     may be detected, subject to (1). 

This then allows us to calculate the component of a static spin or a fluctuating spin in the three possible 

orthogonal directions. Let us define N as the coherent nuclear scattering arising from structural Bragg peaks, 

phonons etc. This scattering does not depend on neutron spin polarisation and does not flip the neutron 

spins, so it is divided equally between the three orthogonal NSF polarisation channels. Finally we can write 

the master equations for the polarization dependent partial differential cross-section according to Blume 

and Maleyev (95), (96), (97): 

  
   

     
           

     
 
     

    (3.74)  

and for the final polarization vector 

                  

     

                

                 

                
   

        
 
  

  
   

(3.75)  

Here    is the polarization tensor, which describes the rotation of the initial polarization vector      in the 

scattering process,       is the polarization created in the scattering process at the sample, My,z are y and z 

components of the magnetic contribution (       
   

       ), Ry,z and Iy,z are real and imaginary parts of the 

nuclear-magnetic interference term (                
   

      ), while C and Mmix are chiral and mixed magnetic 

contribution (       
 
            

       ), which are explicitly written in reference (97). We stress that all terms 

included in equations 3.74 and 3.75 are determined by the sample properties that are described solely by 

the nuclear structure factor FN and the magnetic interaction vector           , as described above. 



45 

Consequently the spherical polarimetry measurements are very useful for study of non-collinear magnetic 

structures. For such compounds it is often impossible to distinguish between different possible magnetic 

structures by other techniques because they are not able to determine the directional information held in 

magnetic structure factors. Additionally, it is useful for investigation of hybrid correlation functions in 

inelastic neutron scattering in compounds where nuclear and magnetic degrees of freedom or different 

magnetic degrees of freedom interfere (98). 

3.4.5 Neutron scattering instruments 

Here we give a short overview of the neutron scattering instruments, which were used during our study. 

3.4.5.1 Powder diffractometer DMC 

The cold neutron powder diffractometer DMC at Swiss spallation neutron source SINQ, at Paul Scherrer 

Institute (PSI), Switzerland is a flexible instrument for efficient neutron powder diffraction studies in the 

fields of crystallography, solid state physics, chemistry and material science, in particular for the 

determination of weak magnetic intensities. Special features are the position sensitive detector, the 

oscillating radial collimator system and the large diversity of available sample environment devices. DMC is 

complementary to the high-resolution diffractometer and is designed for high-intensity performance. 

In a conventional neutron powder diffractometer, at a continuous source, a beam of monochromatic 

neutrons is incident upon a sample and the scattered neutron intensity is measured as a function of the 

scattering angle 2 (Figure 21). The monochromatic incident beam is produced by Bragg reflection from an 

appropriate single crystal monochromator. The neutron count-rate is measured in more detectors, covering 

a broad 2 interval. Masks and collimators restrict the spatial and angular widths of the beam.  

 

Figure 21: Experimental setup of powder diffractometer DMC at SINQ, at PSI, Switzerland (99). 

In an ideal experiment the incident beam would have a single wavelength and unique direction, but there 

would be no intensity at the sample. In practice the incident beam has a narrow distribution of wavelengths 

and a narrow distribution of directions. The intensity at the sample is roughly proportional to the product of 

the widths of these distributions whereas the overall resolution of the instrument (assuming its design is 

optimized) is roughly proportional to one of the widths. Depending on the experiment the compromise 

between intensity and resolution will vary. 

3.4.5.2 Single crystal diffractometer TriCS 

The thermal neutron single crystal diffractometer TriCS at SINQ, at PSI is designed for investigations of 

commensurate and incommensurate crystal and magnetic structures as well as phase transitions driven by 

temperature, magnetic field or pressure. It is appropriate for samples with small-to-medium size unit cells 

(lattice parameter < 20 Å). The layout of the instrument is shown in Figure 22. 
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a  b     

Figure 22: Single crystal diffractometer TriSC at SINQ, at PSI, Switzerland: (a) top view, (b) side view (99). 

The incident white neutron beam first hits a monochromator crystal. The selected wavelength is not 

variable. It is equipped with 2 focusing monochromators: Ge311 and C002 for short (1.18Å) and long (2.3Å) 

wavelength and the possibility to select different reflections peaks however make it possible to select 

between a few different neutron wavelengths. The sample is held in a standard eulerian cradle, which allows 

rotating the sample into an arbitrary position. It is possible to use up to three position sensitive detectors 

held on detector holders or alternatively a single detector can be fixed to this setup. The detectors may be 

moved up and down on a sphere around the sample. This allows to access different lattice planes when the 

eulerian cradle has been replaced by some cryostat or other sample environment devices to heavy to be 

used in conjunction with an eulerian cradle.  

3.4.5.3 Triple-axis spectrometer TASP 

TASP, the triple-axis spectrometer (TAS) with cold neutrons is located at the end of the 1RNR14 neutron 

guide of the SINQ spallation source, at PSI. TASP provides incident neutrons with a wide range of 

wavevectors (1.05 -1 < ki < 3.8 -1) and allows for large momentum transfers (up to 20 meV). It offers the 

option of polarised neutron experiments with either longitudinal or XYZ polarization analysis and neutron 

spherical polarimetry. For these experiments TASP has the option of a Mu-metal Polarization Analysis 

Devise, MuPAD.  

A broad range of problems in condensed matter can be explored with TASP, such as the study of magnetic 

and structural phase transitions and their associated fluctuations, superlattice reflections and critical 

exponents. It is well suited for the study of low-energy collective excitations with high energy and 

momentum resolution and due to the very high sensitivity of the polarized neutrons techniques, it is an 

excellent tool to investigate complex magnetic structures. In addition, using diffuse scattering at TASP one 

can investigate various effects of disorder.  

The TASP is constructed as follows. The monochromator selects from a polychromatic beam of neutrons a 

monochromatic one by Bragg reflection, i.e., only neutrons of a given wavelength (energy) fulfil the Bragg 

condition. Collimators can be used to ensure that the beam does not diverge too much, and they take the 

form of parallel plates which are coated with a neutron-absorbing material. Despite this the width of the 

neutron beam is likely to be larger than the width of the sample, so in order to improve the signal-noise ratio 

diaphragms are placed before and after the sample. Diaphragms are also placed in front of the analyser and 

detector in order to allow full illumination whilst reducing spurious scatter entering the detector, further 

improving the signal-noise ratio. The sample may be mounted in a standard orange cryostat, in a dilution 
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refrigerator, or in a cryomagnet depending on the need. The analyser crystals work in much the same way as 

the monochromator, i.e., one can chose different wavelengths to determine the final neutron wavevector kf. 

 

Figure 23: Layout of triple-axis spectrometer TASP at SINQ, at PSI, Switzerland (99). 

3.4.5.4 Polarised neutron scattering 

A variation on the basic TAS is the polarised neutron TAS, which works on the same principles as the basic 

TAS but has a few modifications. The basic idea behind these is to produce an incident beam of neutrons 

whose spins all point in the same direction. This is done by a polarising monochromator, which typically 

consists of ferromagnetic single crystals, arranged so that neutrons scatter off a particular Bragg planes, 

depending on the chosen wavelength. When the magnetic field is applied parallel to the monochromator 

surface, the spins in it will align parallel to the field. If the crystals are centrosymmetric the nuclear and 

magnetic structure factors for the particular peak are similar in value and the two kinds of scattering can 

interfere resulting in very good polarization. Eventually, this polarized flux hits the sample and by analysing 

the change in polarization state of the neutrons after scattering it is possible to measure scattering which is 

solely magnetic in origin. 

The analysis of the scattered neutrons is based on so called flippers, which flip the neutron spin state from 

one eigenvalue to another, i.e. from spin up to spin down. The flipper is typically a radiofrequency coil, 

where a constant magnitude radio frequency magnetic field is applied parallel to the neutron beam while a 

static field applied perpendicular to the neutron beam varies in magnitude along the beam. For all neutron 

energies there will be some point in the flipper such that their Larmor frequency is equal to the radio 

frequency of the coil, thus resonance will occur and there will be a transition between the Zeeman split up 

and down states, i.e. a spin flip. A spin-flip magnetic scattering event would work as follows: the 

monochromator polarises the beam so that the spins are up, then the spins are flipped in the sample by 

interaction with a spin-1/2 magnetic moment/excitation (parallel to the neutron spin) so that the neutrons 

are now spin down. The flipper then changes the spin state of the scattered beam so that the magnetically 

scattered neutrons are spin up again. The analyser is then set to Bragg-reflect only spin up, so almost all of 

the non-magnetically scattered neutrons are not reflected into the detector, while the scattering from 

magnetic moments/excitations make up the vast majority of the neutrons arriving at the detector. 

Our polarised neutron scattering data were collected in IN20, at Institute Laue Langevin, France. IN20 is a 

thermal beam three-axis spectrometer for inelastic scattering experiments in various sample environments 

(eg. magnets up to 15 T) and can be equipped with single-analyser-detector or Flatcone, with standard 

Helmholtz and CRYOPAD (zero-field) polarisation analysis. In latter case, instead of flippers, nutators are 

used, which adiabatically rotate the polarisation by two guide-field sections (axial and transverse) contained 
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in a single soft-iron cylinder for reducing the noise coming from the external components. The amplitude of 

the fields inside the nutator is 150 G, strong enough for assuring an adiabatic rotation of the polarisation. 

3.5 μSR Spectroscopy 
The acronym μSR stands for Muon Spin Rotation, Relaxation, or Resonance. μSR is a widespread technique 

used in solid state physics and is closely related to NMR. The principle of the μSR technique is quite simple. 

Positive muons are produced and implanted in a sample where they localize at a particular site. The local 

magnetic field        at this interstitial site exerts a torque on the muon spin (S = 1/2), so that the spin 

precesses around the local magnetic field with a frequency of  =          . Here /2 = 135.53879 (1) MHz 

T−1 is the gyromagnetic ratio of the muon. After a certain time, the muon decays and a positron is emitted, 

preferentially in the direction of the muon spin, at the moment of decay. The positron is detected. After 

collecting several million positrons the time-evolution of the polarization of an ensemble of muons can be 

reconstructed. The polarization function P(t) reflects the spatial and temporal distribution of the magnetic 

field at the muon site. In this section a few elements of the μSR technique will be elaborated on. A more 

detailed general description can be found in Refs. (100), (101). Experimental results on some exemplary 

materials can be found in Refs. (102), (103).  

 

Figure 24: Experimental setup for SR consists of muion zero-time detector, as well as backward and forward positron detectors. 
In spite that the muon spin is actually antiparallel to the muon’s momentum, they are drawn here in parallel for clarity. The 

arrows represent the Larmor precession of the muon spin in the local magnetic field        . 

3.5.1 Production, life, and decay of the muon 

The production of intense muon beams starts in large accelerators where protons (p) gain energies up to 

600 MeV. These highly energetic protons are aimed at a graphite or beryllium target. Several nuclear 

reactions take place between the protons and the protons and neutrons (n) of the target, leading to the 

production of pions (): 

   
 
 

 
       

             
       

 

   
 
 

 
       

        
        

 

(3.76)  

where d stands for deuteron. The charged pions + and − have an average life time of 26 ns and decay via a 

weak force process into the muons + and - and the accompanying (anti-)neutrinos (  and  ): 

          

          
(3.77)  
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The neutral pion 0 plays no role in the μSR technique, since it has a very short average life time of 0.089 fs 

before it decays into photons. In solid state physics almost all μSR research is carried out using positive 

muons  +. 

Pions possess zero spin and neutrinos have a spin S = 1/2 polarized opposite to their momentum. Because 

angular momentum has to be conserved, the muon spin has to be antiparallel to its momentum in the rest 

frame of the pion. This allows the production of nearly 100 % polarized +-beam. 

After production, the muons are directed to the SR instruments by electromagnetic guide fields using 

bending magnets and focussing quadrupole magnets. Along the path usually an electric and magnetic field 

separator is included to remove contaminant particles (mainly positrons) from the muon beam. After 

implantation in the sample the muon will thermalize. Along the first part of its track the muon thermalizes by 

energy exchange through ionizing host atoms and creating vacancies. This however does not influence the 

experimental results, since the final area of localization will not be affected. Along the last part of its track, 

the muon thermalizes by successive captures and dissociation of electrons from the host. The neutral bound 

state with an electron is known as muonium ( +e−), an exotic light version of the hydrogen atom. In semi-

conductors and insulators muonium can be stable, and it can even be incorporated in some organic 

materials. Finally, muonium dissociates and the muon will localize at an interstitial site. At its localization 

site, the muon magnetically interacts with the surrounding matter. The implantation and thermalization 

processes occur so rapidly (10−9 s) that depolarization is insignificant. The muon carries a relatively large 

magnetic moment, which even exceeds the proton’s magnetic moment:  = 3.2 p. It therefore acts, as a 

very sensitive local magnetic field probe. Due to the absence of a quadrupolar electric moment (S = 1/2) the 

muon does not couple to electric field gradients. 

The average muon life time is 2.2 s after which the muon decays into a positron e+ via a three-body process 

             (3.78)  

where    and    are the neutrinos and antineutrinos associated with the positron and the muon 

respectively. The decay positrons are emitted preferentially in the direction of the + spin, which allows a 

determination of the time evolution of the polarization. The probability distribution of the positron emission 

is given by 

                     (3.79)  

where  is the angle between the muon spin at the moment of decay and the direction in which the positron 

is emitted. In Figure 25 two characteristic angular patterns        are represented. The asymmetry 

parameter a depends on the energy of the positron. a increases monotonically with the positron energy and 

is 1 for the maximum positron energy Emax = 52.83 MeV. For E = 0, a = −1/3 and changes sign for E = ½ Emax. 

However, very few positrons are emitted with low energies and those, which are, will usually not be 

detected. When integrated over all energies one obtains a = 1/3 (100). The positron detectors used around 

the world in SR setups do not determine the incoming energy of the positrons and therefore one always 

measures the asymmetry parameter a averaged over all energies. 

Because of their large kinetic energy (30 MeV), the positrons are only weakly absorbed by the sample and 

cryostat walls. They are monitored and stored by detection electronics in a counts versus time histogram. 

The time histogram of the collected intervals is of the form 
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                         (3.80)  

where b is a time independent background, N0 a normalization constant, and        accounts for the  + 

decay with the average decay time . P(t) reflects the time dependence of the + polarization and is 

normalized to unity for t = 0. The value of the initial asymmetry a depends on the experimental set-up and is 

in practice smaller than the theoretical value of 1/3. Due to the finite solid angle of the detectors, energy 

dependent efficiency of detection and possible reduced beam polarization, a is usually 0.23 − 0.25. The 

phase factor det accounts for the angle between the initial muon polarization and the positron detector. 

 

Figure 25: The angular distribution        of the decay positrons for the maximum positron energy of 52.83 MeV (a = 1) and 
integrated over all energies (a = 1/3). 

3.5.2 Experimental geometries 

In SR two types of experimental geometries are used. They are depicted in Figure 26. Measurements in 

zero magnetic field and in longitudinal field are performed with the same geometry. The positron detectors 

are set parallel and antiparallel to the initial beam polarization       . They are called the “forward” and 

“backward” detector, respectively.  

By definition the magnetic field        is applied along the z direction. In the longitudinal geometry the field is 

applied parallel to the beam polarization       . The measured polarization function is called Pz(t). In the 

transverse geometry        is perpendicular to       , which is then along x. The positrons are detected in a 

direction perpendicular to       , from which Px(t) is reconstructed as  

       
            

            
  (3.81)  

Here NF(t) and NB(t) are the number of counts in the forward and backward detector and  is an 

experimental factor determined by detector efficiencies, exact experimental factors like distance between 

sample and detectors, cryostat, etc. It is measured by applying a transverse field (in the paramagnetic state) 

at exactly the same experimental conditions. With the correct , Px(t) should oscillate symmetrically around 

zero. 

 

Figure 26: Two types of experimental geometry: (a) the longitudinal and (b) the transverse set-up. Although the muon spin is 
actually antiparallel to the muon’s momentum, here the muon spin is drawn parallel to the momentum for clarity. The arrows and 
cardioids in the transverse set-up represent the Larmor precession of the muon spin in the applied field and the accompanying 
angular positron distribution. 
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It should be noted that for e.g. a ferromagnet in zero field, with        perpendicular to the local field, Px(t) is 

measured and not Pz(t), although the measurements are performed in zero applied magnetic field. Physically 

for the muon spin there is no difference between a static externally applied magnetic field        or a constant 

field with its origin in the ferromagnetism of the compound under study. 

3.5.3 Depolarization and relaxation functions 

The polarization function P(t) ( = x, z) extracted from the experiment contains the information on the 

magnetic distribution at the muon site and the time scale of the magnetic fluctuations. A few polarization 

functions will be discussed here, as far as they were used in this thesis. For a more extensive study, see e.g. 

references (102), (103). 

3.5.3.1 Static magnetic fields 

The starting point of all calculations is the consideration of a single muon spin in a static local magnetic field 

       oriented in an arbitrary direction. As explained before, the polarization function P(t) is measured either 

along the x axis or along the z axis. Therefore P(t), with ( = x, z), reflects the projection of        along the x 

or z direction. The Larmor precession of a single muon spin and its projection along the  direction 

(depending on whether          x or          z) are illustrated in Figure 27. If all muon spins precess in the 

same static magnetic field, oriented at an angle  relative to the initial muon spin direction       , the 

Larmor equation yields 

                         (3.82)  

where              . The polarization P(t) describes a cone with the local field        as the axis of rotation. 

It is only the component of the muon spin perpendicular to       , which oscillates. The parallel component is 

time-independent. Both these components are projected onto the x or z direction, depending on the 

geometry. Equation 3.82 is the basic equation in SR. 

 

Figure 27: Muon spin precession describing a cone around a local magnetic field        . Here θ denotes the angle between the initial 
muon spin polarization and the local field. 

Clearly, the assumption of a single magnetic field direction for all muons throughout the sample is a very 

simple model. Neglecting spin dynamics, the assumption is only encountered in single crystals of 

ferromagnets and antiferromagnets with a negligible volume fraction of domain walls. Helical structured 

magnets for example are excluded, since in different unit cells the local field at the muon site will have 

another direction. Obviously, the next step is to assume a field distribution at the muon site. It is easy to see 

that the polarization function P(t) can then be described by 
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                                  (3.83)  

where           is the normalized magnetic field probability function. If only a single value of        is present, 

          is a Dirac -function and equation 3.82 is recovered. For a polycrystalline ferromagnet with no 

preferred direction for the grains (“texture”) one can write                  
                 to obtain 

      
 

 
 

 

 
            (3.84)  

which is a simple oscillating function with a 1/3 shift coming from averaging of the cos2 term. A static 

distribution of local magnetic fields at the muon site, as the one arising from randomly oriented static 

nuclear magnetic moments through their dipole fields, can be very well approximated by a Gaussian field 

distribution because of the statistical law of large numbers. This distribution is isotropic and has zero average 

field, so no net precession is observed. Including an external magnetic field        parallel to z leads to 

           
  

    
 
 

     
       

  
 

   
      

       
 

 
 

   
      

  
      

       
 

      (3.85)  

where     
      

   is the square of the width of the field distribution along the cartesian axis i = x, y, z. 

Introducing this function in equation 3.83 gives for the case of Bext = 0 the well known Kubo-Toyabe function 

(Figure 28) (104) 

         
 

 
 

 

 
             

 

 
       (3.86)  

 

Figure 28: The Kubo-Toyabe function as given in equation (3.86). 

3.5.3.2  Fluctuating magnetic fields 

In contrast to the assumption of a static magnetic field at the muon site – static compared to the life time of 

the muon - the magnetic fields are in reality more often fluctuating on the muon time scale. This can be 

because of paramagnetic fluctuations above the magnetic ordering temperature, or because of spin waves 

below this temperature.  

A mathematical description of the polarization function P(, t) due to fluctuating magnetic fields can be 

obtained by applying the strong collision approximation. In this model, it is assumed that the local field        

changes orientation and magnitude with a single fluctuation rate . According to Poisson statistics, the 

probability of j jumps within a time t is  je− t, where the time ti of the i-th jump is arbitrary. The only 

restriction is that t1 < . . . < ti < . . . < tj < t. After a “collision” the field is randomly chosen from the probability 
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distribution           applicable to the compound under study and experimental conditions, without any 

correlation to the field before the collision. Before the first collision the polarization P(t) should be 

described by equation 3.83. After the first collision the ensemble of muons will further depolarize according 

to the same function but with an initial time zero at the time of collision. This process for multiple collisions 

is given by 

                                      

 

 

                               

  

 

   

 

 

     

(3.87)  

In general, this expression cannot be solved analytically and therefore one needs numerical computation. It 

is possible (105) to write this formula as  

              
                       

       
 

 

  (3.88)  

This equation is much easier to solve numerically, and is therefore used in the computations of P(, t). 

For / sufficiently large, the Laplace transform can be used to find a useful approximate analytical 

expression. The resultant formula (105) is given by 

  
               

   

  
              (3.89)  

For very fast fluctuations with respect to , Pz
KT(, , t) reduces to 

  
                                 (3.90)  

This is the so-called motional narrowing limit. 

For applied magnetic fields        the integrals in equation 3.83 can also be evaluated. For a transverse field, 

the approximation 

  
                    

  

  
                         (3.91)  

is valid for large enough /. This formula is found via the Laplace transform (105) and is known in NMR as 

the “Abragam formula”. It reduces to 

                                                (3.92)  

in the motional narrowing limit (/>> 1).  

3.5.4 SR instruments 

Muon beams are produced either as a continuous beam (PSI, Switzerland and TRIUMF, Canada) or as a 

pulsed one (ISIS, UK and KEK, Japan). For continuous beams every event is treated separately. A clock is 

started at the moment that a muon enters the sample. This clock is stopped when the corresponding decay 

positron is detected. The elapsed time is stored in a counts versus time histogram. For pulsed beams all 

muons come in at the same time t0. This pulse has however a finite width distributed around t0. Due to this 

uncertainty in t0 continuous beams have a better time resolution than pulsed beams. The advantage of the 
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pulsed beams is their lower background. The background b of equation 3.80 is reduced since after the pulse 

the beamline is shut and no other muons enter the sample. The lower background leads to a longer time 

window for the pulsed beam sources. Typically, the time window of a pulsed beam source is twice as long as 

for a conventional continuous source. 

All the μSR measurements presented in this thesis have been carried out at PSI using the GPS, which uses 

surface muons. They are called like this, since they are obtained from the pions decaying at rest near the 

surface of the production target. The surface beam is fully polarized and monochromatic, with a kinetic 

energy of 4.1 MeV. Due to this small energy, the beam has a short stopping range Leff = c/, where c is 

around 160-200 mg/cm2 and  the density of the compound in mg/cm3 (e.g., for FeTe2O5Br Leff  35 cm). 

3.6 Dielectric measurements 
The capacitance and the loss of a dielectric sandwiched in between two parallel electrodes can be written as 

         and               , where 0 is the permittivity of free space,´ and ˝ are the real part and 

imaginary part of the dielectric permittivity of the material, A is the area of the electrodes and d is the 

thickness of the sample. Peter Debye developed a model of dielectric relaxation by considering a delay of the 

response of a dipole under an alternating electric field due to a surrounding viscous medium (106). 

According to this model: 

        
     
     

  (3.93)  

where  is the relaxation time associated with the orientation process, s is the static permittivity (zero 

frequency limit),    is the permittivity at optical frequencies, and  is the (angular) frequency of the applied 

electric field. By separating the real part from the imaginary part in the Debye equation, one obtains: 

         
     

       
            

         

       
  (3.94)  

This implies that in a Debye-like relaxation, ´and ˝ show a step and a peak, respectively, at the relaxation 

frequency, −1.  

In practice, the dielectric constant is derived from the capacitance measurements acquired by LCR meter. 

This measures the impedance of the sample (plate, with electrodes on each side) by measuring the voltage 

across the part and the current through it. This is done for both the real and imaginary (90° phase shifted) 

components of the signals. The complex ratio of voltage to current is equal to the complex impedance. The 

processor calculates the various parameters, with capacity being one of them. 

The quasistatic polarization (P) was determined from accumulated charge, measured by the Keithley 617 

programmable electrometer, as described in references (107), (108). 

3.7 Thermal expansion 
High-precision measurements of the sample length as a function of temperature T or magnetic field B were 

performed on single-crystalline samples using the parallel plate capacitance method. The sample is 

connected to one of the plates, whereas the other plate is fixed. Because the capacitance C is given by 

  
  

 
  (3.95)  
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where d is the distance between the plates, A the area of the plates, and =r0 the dielectric constant of 

the medium between the plates, the length of the sample is inversely proportional to the capacitance. 0 is 

the dielectric constant of the vacuum and r the dielectric constant of a medium, relative to 0. 

A schematic illustration of the parallel-plate capacitance method is shown in Figure 29. One can see that the 

upper capacitance plate is fixed while the lower is resting on the sample. The lower plate is positioned with 

springs, to ensure good contact with the sample. The bottom of the sample is placed on a plateau, fixed by a 

screw. The distance d between the two plates is chosen to be ∼ 100 μm. 

The coefficient of thermal expansion  is calculated by  = (1/L)(dL/dT), where L is the length of the sample. 

The linear thermal expansion of the sample is calculated by 

         
 

 
 
  

  
 
           

 
 

 
 
  

  
 
       

      (3.96)  

where the first term corresponds to the change in the distance between the plates when the sample is 

mounted in the cell. The second term accounts for the so-called cell effect, i.e. the signal observed when a 

copper sample of the same length as the sample under investigation is mounted. This cell effect is found to 

reproduce very well. The last term is the linear thermal expansion of the copper of the cell. 

 

Figure 29: Schematic illustration of a parallel-plate capacitance cell to measure thermal expansion and magnetostriction. The two 
plates of the capacitor are electrically charged. The sample is pressed against the lower plate of the capacitor by turning the 
screw, on the bottom of the cell, tight. When the sample expands, it pushes the lower plate upwards, thereby enlarging the 
capacitance. 

Because the capacitance can be measured very accurately, total length changes down to 0.05 Å are 

measurable. This means that for samples of just 1 mm length, a resolution of 5 × 10−8 K−1 can be obtained in 

 (T) for a temperature step of T = 0.1 K. 

3.8 X-ray single crystal diffraction 
X-ray single-crystal diffraction is a powerful technique used to identify crystal structures of compounds. The 

principle behind this technique is based on the constructive interference of x-rays, scattered from the 

illuminated sample. Hence the theoretical treatment is very similar as for elastic neutron diffraction, i.e., 

again the relative intensity of the diffraction peaks is mainly controlled by the structure factor, which is in 

this case denoted as 

         
                

 

   
  (3.97)  

where h, k, and l are the Miller indices of the scattering plane and u, v, and w are the reduced position 

indices of the N atoms in the unit cell. The atomic scattering factor fn is a measure for the ability of an atom 

to scatter x-rays, relative to that of a single electron. The scattered intensity I is proportional to |Fhkl|
2. 
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As in neutron case, the sample is held in a standard eulerian cradle, which allows rotating the sample into an 

arbitrary position hence a broad range of the Bragg peaks can be reached. The measured intensity as a 

function of the scattering angle 2 yields information on the spacing between planes of atoms in the crystal 

structure, as well as the sites of the atoms within the unit cell.  

The accuracy, with which the lattice parameters of a compound can be determined, depends on the 

accuracy in the determination of 2. In this thesis (Chapter 4) the lattice parameters were measured with an 

uncertainty of 0.01 Å.  
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4 FeTe2O5Br system 
In magnetic systems, where a competition between different magnetic interactions exists, resulting 

magnetic frustration is often resolved by adopting three-dimensional long-range incommensurate spiral 

magnetic order, e.g., by cycloidal and transverse conical structures (28), (see also Figure 6). The symmetry of 

such magnetic structures is very low and lacks the inversion centre. Thus, one can imagine that in 

magnetically ordered phase, crystals, which actually have inversion-symmetry built in the crystal structures, 

lose the global inversion symmetry and thereby pass the symmetry restrictions for the occurrence of the 

electric polarization. If electric polarization actually evolves, we talk about electric polarization induced by 

magnetic ordering, which is an archetypal example of strong magnetoelectric coupling. If this is the case, 

then magnetic and ferroelectric transitions occur simultaneously below certain ordering temperature. This is 

indeed what happens in the magnetoelectric multiferroic TbMnO3, where electric polarization develops in 

parallel with evolution of cycloidal magnetic ordering, coming from geometrically frustrated spin 

arrangement. The discovery of spin-driven ferroelectricity in this compound in 2003 (5) has ignited extensive 

research activities focused on the ferroelectric properties of frustrated magnetic systems. It was soon 

realized, that the existing materials, where strong magnetoelectric coupling was observed are limited to the 

temperatures far below room-temperature, necessary for practical applications. Therefore, Eerenstein et al. 

suggested (24) that magnetic materials with reduced dimensionality should be also investigated for large 

magnetoelectric effects at high temperatures since one- or two-dimensional magnetic short-range order 

regularly persists to much higher temperatures than three-dimensional order does. In present, extensive 

research activities are devoted to the search for novel systems with strong magnetoelectric coupling, which 

might persist up to room temperature. This prompted us to investigate magnetic and ferroelectric properties 

of the FeTe2O5Br system (16), which has a crystal structure that implies both magnetic frustration and 

reduced dimensionality.  

In this chapter we present our discovery of a new class of materials in which linear relationship between 

magnetisation and polarisation arises in a state in which magnetic moments with fixed direction vary 

periodically in magnitude, in clear contrast to the spiral magnetic structures (28). We find that in the layered 

FeTe2O5Br compound, comprised of iron tetramer clusters (16), a spontaneous electric polarisation appears 

simultaneously with a low-temperature long-range antiferromagnetic order (32). Below the transition 

temperature the Fe3+ (S = 5/2) magnetic moments on each crystallographic site order collinearly with an 

incommensurate amplitude modulation resulting from competing superexchange interactions (32). The 

spontaneous polarisation is ascribed to the Te4+ lone pairs that serve as superexchange bridges between iron 

tetramer clusters and thus couple the magnetic and ferroelectric order.  

4.1 Crystal Structure 
The first synthesis of the FeTe2O5Br compound was reported in 2006 by Becker et al. (16).  The solid solution 

FeTe2O5Br crystallizes in a layered structure with a monoclinic unit cell (Table 2) and has calculated density of 

5.213 g/cm3. The layers, which are stacked along the crystal a*-axis, are connected only by weak van der 

Waals interactions so that each layer can be considered almost as an individual unit (Figure 30).  

From the ions composing the FeTe2O5Br system two species stand out in particular. First there are Te4+ 

(5s25p0) cations with their stereochemically active lone pair electrons.  The effective volume of the lone pair 

electrons is approximately the same as the volume of the O2- ion (15). Consequently, these elements, when 

mixed with a transition metal in the presence of halogen ions, impose openings in the crystal structure and 

effectively reduce the dimensionality of the system. Hence they are often called “chemical scissors”.  

Additionally, lone pair electrons are typically found in ferroelectrics as they are easy to polarize and can 

under proper conditions contribute to the macroscopic electric polarization. A prototypical example is 
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BiFeO3, where occurrence of electric polarization below TC  800 K is associated with a collective asymmetric 

distortion of the lone pair electrons. The other species we would like to bring into the light here are Fe3+
 

(3d5) cations with the spin quantum number S = 5/2, as they are responsible for magnetic properties of the 

system. 

a     b  

Figure 30: Crystal structure of FeTe2O5Br viewed along (a) a*-axis and (b) b axis. Neighbouring layers (bc planes) are held together 
only by weak van der Waals interactions. The Fe

3+
, O

2-
, Te

4+
 and Br

-
 ions are denoted by yellow, red, grey and purple spheres, 

respectively. 

Table 2: Basic crystallographic parameters for FeTe2O5Br system determined at 291(2) K (16). 

Space group:   P21/c, (monoclicnic) 

Lattice parameters a = 13.3964(8) Å b = 6.5966(4) Å c = 14.2897(9) Å  = 108.118(6)° 

Atomic coordinates: Atom x/a y/b z/c 

 

Te1 -0.10832(3) -0.30965(6) -0.71371(3) 

Te2 -0.36240(3) 0.46582(6) -0.63843(3) 

Te3 -0.19700(3) -0.01667(6) -0.51910(3) 

Te4 -0.28016(3) 0.28811(6) -0.35820(3) 

Fe1 0.11775(7) -0.00147(12) -0.02429(6) 

Fe2 -0.06206(7) 0.29481(12) -0.14369(6) 

Br1 -0.43478(6) 0.71738(12) -0.54336(5) 

Br2 -0.38242(6) 0.64507(13) -0.27823(6) 

O1 0.0890(3) 0.2985(6) -0.0521(3) 

O2 -0.0370(3) 0.9873(6) -0.1031(3) 

O3 -0.2281(3) 0.5882(6) -0.5908(3) 

O4 -0.2097(3) 0.2294(6) -0.2245(3) 

O5 -0.1872(3) 0.4828(6) -0.3778(3) 

O6 0.2108(3) 0.5527(6) -0.1079(3) 

O7 0.1110(3) 0.7134(6) 0.0186(3) 

O8 0.0119(3) 0.7563(6) -0.2462(3) 

O9 -0.0973(3) 0.5774(6) -0.1362(3) 

O10 -0.3348(4) 0.2619(6) -0.5450(3) 
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A detailed inspection of the crystal structure (16) reveals there are actually two crystallographically different 

Fe3+
 positions (Table 2). Both of them have a distorted [FeO6] octahedral coordination. Four such octahedra 

are connected via edge sharing to form a [Fe4O16]
20-

 unit where the four Fe3+
 ions are in the same plane and 

form a rhomboid (see Figure 31). Each of the four Fe1-Fe2 pairs is linked via a double Fe-O-Fe bond (bonding 

angles of 95-110o, see Table 3). In addition, the two Fe1 sites are doubly bonded across the tetramer 

diagonal (bonding angle 102o, see Table 3). The similarity in bonding angles and distances suggests that the 

antiferromagnetic superexchange interaction between Fe1 and Fe2 moments, J1, should be similar to that 

between Fe1 and Fe1 moments, J2 (16). Consequently, the structure of the iron tetramer can actually be 

described as two coupled triangles and therefore a competition between J1 and J2 is expected on the 

tetramer level. 

Table 3: Fe-Fe distances and Fe-O-Fe angles within a [Fe4O16]
20-

 group at 291 K (16). 

X 3.159(1) Å   101.7(2) °   95.9(1) ° 

Y 3.343(1) Å  ’ 99.5(2) °  ’ 110.2(2) ° 

Z 3.435(2) Å      101.7(2) ° 

Let us now look at the coordination of Te4+ cations. There are four crystallographically different Te4+ cations. 

Considering the primary bonding distance of 2.66 Å for Te-O bonds and 3.22 Å for Te-Br bonds, all the Te 

cations can be described as having an asymmetric one-sided coordination with different number of ligands. 

Te1 is one-sided coordinated to three oxygens at distances around 1.89 Å, giving it a tetrahedral [Te1O3E] 

coordination, where E denotes the lone pair electrons. The Te2 cation coordinates two oxygens and one 

halide giving it a unique [Te2O2BrE] coordination. The present compound is the first where Te4+
 has the 

classical one-sided three-coordination with both oxygen and a halide instead of only one of the two ligands 

(16). Te3 coordinate three oxygen anions at approximately 1.92 Å and two additional ones at 2.477(4) and 

2.549(4) Å, which results in a one-sided [Te3O3+2E] coordination resembling a greatly distorted octahedron. 

Te4 has also three short Te-O distances of approximately 1.90 Å as well as two additional ligands, an oxygen 

anion at 2.549(4) Å and a bromine anion at 3.1146(8) Å, resulting in a distorted [Te4O3+1BrE] octahedral 

coordination. The four different Te polyhedra are connected via corner and edge sharing to form a 

[Te4O10Br2]
6-

 group (see Figure 31). 

a  b  

Figure 31: (a) Structure of a single [Fe4O16]
20-

 basic building block. Two crystallographically non-equivalent Fe
3+

 sites, labelled Fe1 
and Fe2, connect into the tetramer cluster, in which competition between different Fe1-Fe2 and Fe1-Fe1 magnetic superexchange 
interactions is anticipated. (b) Planar [Te4O10Br2]

6-
 group showing the various coordination polyhedra around the Te

4+
 cations. 
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Each layer in the crystal structure is made up of the two different building blocks; the [Fe4O16]
20-

 groups 

(Figure 31a) and the [Te4O10Br2]
6-

 groups (Figure 31b). The [Te4O10Br2]
6-

 groups can be seen forming 

sublayers sandwiching the [Fe4O16]
20-

 groups (see Figure 30), leading to a triangular array of [Fe4O16]
20- 

clusters linked by [Te4O10Br2]
6- units. There are no bonds formed in between two different [Te4O10Br2]

6-
 

groups nor between the two different [Fe4O16]
20-

 groups. Instead the [Te4O10Br2]6-
 groups are connected to 

the [Fe4O16]
20-

 groups via common oxygens to build up charge neutral layers (see Figure 30). It is important 

to stress that all inter-cluster magnetic superexchange paths go through at least one of the Te4+ sites, thus 

providing an intimate link between the Fe3+ magnetic moments and the Te4+ lone pair electrons.  Between 

the layers there are Br anions, which as well as the stereochemically active lone pair electrons of the Te4+ 

(5s25p0) cations protrude from the layers. 

The shortest Fe-Fe distance in between two [Fe4O16]
20-

 groups within the same layer is ~4.76 Å, while the 

shortest Fe-Fe distance in between two layers is ~10.1 Å. This large separation and the lack of direct bonds 

(only van der Waals forces connect the adjacent layers) in between the layers suggest that there are very 

weak magnetic interactions in between two layers and that the system can be well described as magnetically 

two-dimensional system. 

With respect to NMR and NQR experiments, which were performed on Br nucleus, we finally make also a 

remark concerning the Br-...-Fe exchange paths. Having in mind the primary bonding distance for Te-Br 

bonds (3.22 Å), the only atom close enough to Br1 is Te2, i.e., 3.212(1) Å, which is connected to Fe1 via O3. 

On the other hand, Br2 has two Te4+ cations just at the border of primary coordination sphere. The Te4 is 

3.1146(8) Å away while the Te2 is 3.333(7) Å away, so we assume, that Br2 is coupled to Fe2 via Te4 and O4 

and to two Fe1-sites via Te4 and O5 and via Te2 and O3. We thus anticipate that the Br NMR/NQR signal 

would give us rich information about the magnetic behaviour of (S = 5/2) Fe3+ magnetic moments. 

4.2 Magnetic characterization of the paramagnetic state 
The reduced dimensionality and the magnetic frustration within the iron tetramers, as well as their 

triangular arrangement in the crystal layers, suggest that FeTe2O5Br may have interesting magnetic 

properties. Becker et al. (16) performed specific heat, magnetization measurements and Mössbauer 

experiments on powder samples, while we made a detailed investigation of single crystal samples.  These 

have been studied using SQUID magnetisation, ESR, specific heat, neutron diffraction, 81Br nuclear magnetic 

and quadrupolar resonance (NMR and NQR), + spin relaxation, dielectric susceptibility, x-ray diffraction, 

thermal expansion and inelastic neutron scattering. 

4.2.1 Magnetic susceptibility  

The magnetic susceptibility as a function of temperature was measured with a Quantum Design SQUID 

magnetometer MPMS-XL-5 equipped with a 5 T superconducting magnet. Zero-field-cooled and field-cooled 

susceptibilities were examined in the temperature interval between 300 and 2 K in a magnetic field of 0.1 T. 

At high temperatures, i.e., above 100 K, the magnetic susceptibility  follows the Curie-Weiss law for all 

crystal orientations (Figure 3a): 

     
 

     
       (4.1)  

Here the dia = -134.8×10-5 Am2/T mol is a temperature-independent diamagnetic contribution for FeTe2O5Br 

calculated from Pascal constants (Table 4) taken from Magnetochemistry by Selwood (109). 



61 

Table 4: Pascal's constants for selected ions (109). 

Ion Pascal's constants (10−5 Am2/T mol) 

Fe -12.8 

Te -37.3 

O -3.36 

Br -30.6 

FeTe2O5Br -12.8 - 2 × 37.3 - 5 × 3.36 - 30.6 = 134.8 

 

The extracted Curie-Weiss temperature CW = -125 (20) K is not in the best agreement with the values 

presented by Becker et al. (16), where they observed anomalous behaviour around 250 K. Since we did not 

observe such anomaly in any of our numerous experiments, we suspect that it is an experimental artefact 

connected to the powder nature of the previous samples. Focusing back on our results, we note that there is 

no significant difference between zero-field-cooled and field-cooled runs. The high CW indicates strong 

antiferromagnetic interactions between Fe3+ moments and the effective magnetic moment eff = 6.15(5) 

B/Fe3+ obtained from the Curie constant, C = 47(5) Am2/T mol, is close to the calculated value 5.92 B 

expected for Fe3+ with a d5 electronic configuration and a high-spin 6S (S = 5/2, g = 2) ground state. The small 

discrepancy indicates that the actual g  2.08(2). The low-dimensional magnetic character of FeTe2O5Br is 

reflected in a broad maximum of  at ~ 50 K (minimum in Figure 32a). At much lower temperatures, i.e., at 

TN = 10.6(2) K, a pronounced change in the temperature dependence of  is evident (Figure 32b), which 

indicates the development of a three-dimensional long-range magnetic ordering. The low-temperature 

susceptibility results (Figure 32b) show that  is the smallest for magnetic field,    ||b, implying that magnetic 

moments prefer ordering along the b-axis (easy axis), i.e., magnetization in this direction cannot increase 

significantly when magnetic field is applied. On the other hand, susceptibility is the largest when the 

magnetic field is applied along the c-axis, signifying that c-axis is so called intermediate axis and a*-axis is so 

called hard axis, as the magnetic moments are not keen to rotate towards it. A large empirical frustration 

factor f = |CW |/TN  11 indicates a significant reduction of TN compared to CW, typically observed in 

strongly frustrated systems (f > 10) (110), and thus concurs with frustrated geometry of the FeTe2O5Br. On 

the other hand, TN might be suppressed solely by the low-dimensional nature of investigated system (80), 

(111).  

a  b  

Figure 32: (a) Molar magnetic susceptibility for FeTe2O5Br measured along all three crystal directions in applied magnetic field of 
100 Oe already corrected for diamagnetic contribution. Inset: magnetic susceptibility at low temperatures. Note a pronounced 
anomaly at the magnetic-phase transition temperature TN = 10.6(2) K marked with an arrow. (b) Inverse molar magnetic 
susceptibility for FeTe2O5Br. Thin solid line represents the Curie-Weiss behaviour above 100 K.  
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The discussed magneto-structural correlations of FeTe2O5Br are evident from a comparison of intra Fe-Fe 

distances and Fe-O-Fe angles for the [Fe4O16]
20-

 groups, listed in Table 3. The shortest inter Fe-Fe distances 

between the groups, 4.76 Å, are considerably larger than the intra group Fe-Fe distances. Therefore the spin 

cluster character of the material is promoted, which consequently suppresses the long-range ordering, i.e., 

the low transition temperature is likely a result of weak superexchange paths connecting the [Fe4O16]
20-

 

groups. Actually, the large variety of intra- and inter-group distances associated with competing interactions 

are the most probable cause for the large variation of magnetic energy scales given by the Curie-Weiss 

temperature (110 K), the maximum position (50 K) and the ordering effects (10 K). 

Based on the crystal structure Becker et al. (16) proposed a model assuming antiferromagnetic coupling J1 

connecting the Fe1 and Fe2 across the edges of the tetramer and J2 between the opposite Fe1 across the 

diagonal of the tetramer. The appropriate Hamiltonian is hence: 

                                                   (4.2)  

for which the energy levels are given by (16): 

          
                            

     
                            

(4.3)  

where ST, SI, and SII are the quantum numbers of the spin operators: 

        

 

   

                     
            (4.4)  

For high-spin Fe3+ (Si = 5/2), SI and SII can take the spin values 0, 1, 2, ..., 5. Using Van Vleck approximation 

(112), the effective magnetic moment eff is given by: 

    
    

                 
  

      
  

    

  

         
  

        
   

 
  

  (4.5)  

For the susceptibility of the tetramer one obtains 

    
      

    
     

    

    
  (4.6)  

To consider the coupling between the Fe tetramers, we apply a molecular field approach and calculate the 

susceptibility     
   according to 

    
   

    
   

      
        

   
   

 

       (4.7)  

where z’J’ represents a mean superexchange coupling constant of Fe tetramers to z’ neighbouring tetramer 

clusters and NA is the Avogadro constant. 

According to the presented model, Becker et al. (16) satisfactory explained temperature dependence of  

measured on powder samples with J1 = -11.7 K, J2 = -12.3 K, and z’J’ = 17.4 K. These parameters are 

consistent with the low-dimensional nature of the system, i.e., since z’  6, the intercluster coupling J’ is 
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approximately four times smaller compared to the intracluster coupling Ji. However, obtained parameters 

give little information about the nature of the magnetic groundstate. To sum up, based on the magnetic 

susceptibility measurements we can state that the magnitudes of intracluster interactions are of the order of 

-10 K and 4 times smaller for intercluster ones, but it is very difficult to be more specific, i.e., stating the 

exact J1 : J2 : J’ would be misleading. 

4.2.2 Electron spin resonance 

Continuous wave ESR experiments were performed in the X-band (9.5 GHz) on a home build spectrometer 

equipped with the Varian E-101 microwave bridge and HP 5350B microwave frequency counter. An Oxford 

ESR 900 continuous flow liquid He cryogen system was used for temperature-dependent measurements 

between 15 and 300 K. Temperature stability was better than 0.1 K. 

At room temperature a single intense and almost symmetrical resonance has been observed in X-band ESR 

experiment for      a* (Figure 33b). Its calibrated room temperature intensity corresponds to ESR = 8.5∙10-2 

Am2/(T mol), which is close to the value measured in magnetization measurements (16). The resonance 

signal can be well simulated as a combination of absorption spectra with a small (r  0.1) dispersion 

contribution (equation 3.15). This is most likely due to mixing of absorption and dispersion signals, 

frequently found in insulators with non-diagonal elements of the dynamic susceptibility (70). On the other 

hand, almost symmetric (r << 1) Lorentzian lineshape suggests that the exchange narrowing is effective and 

consequently blurs the difference between the two magnetically non-equivalent Fe3+ sites in the crystal 

structure. Therefore, the measured g-factor           = 2.008(1) represent only an effective g-factor value 

of the two chemically non-equivalent Fe3+ sites. We note that the measured g-factor is rather characteristic 

of a high-spin Fe3+ (S = 5/2) magnetic ions (16). The measured ESR linewidth B1/2 = 54.0 mT for      a* is 

large and is likely to be a consequence of strong magnetic anisotropies. 

On Figure 33 we show a complete angular dependence of the basic X-band ESR signal parameters measured 

at room temperature, i.e., signal intensity, g-factor and linewidth. The intensity seems to be relatively 

insensitive to the orientation of the applied magnetic field, as it varies for 10 % only. The g-factor also does 

not change much, as           = 2.008(1),          = 2.001(1), and          = 2.006(1). However, it shows 

unusual angular variation with the periodicity of 90°, which can be described for a*b rotation as y = A’ + 

B’(3cos2(’– 0) – 1)2, where A’ = 1.9973(4) , B’ = -0.0024(5) mT and 0 = 11(1)° (The fit is shown as a solid 

magenta line on Figure 33). This variation can have two possible origins. First, the admixture of the 

dispersion might influence the fit of the ESR line and second, the higher order terms in the g-factor can 

result in the angular variation with the periodicity of 90° (113). The linewidth is similarly insensitive to the 

orientation of the applied magnetic field when the magnetic field is rotated in the bc plane, but show large 

anisotropies in the a*b and a*c planes, changing from B1/2 = 54.0 mT for      a* to B1/2 = 85.0 mT for      b, 

c. The linewiedh dependence can be empirically described as A + B sin2, where A and B are fitting constants 

and the angle  denote the deviation from      a* orientation. From fitting the angular dependence of the 

linewidth, we obtained for a*b rotation A = 33(2) mT and B = 54(2) mT (The fit is shown as a solid magenta 

line on Figure 33). The value of the measured linewidth is rather surprising as magnetic anisotropies are not 

obvious in this system. Namely Fe3+ (S = 5/2) ions has typically quenched orbital angular momentum and 

thus suppressed LS coupling, responsible for the anisotropies such as single-ion anisotropy (equation 2.7). 

Nevertheless, the observed anisotropy of the linewidth might be a result of the higher order terms, where LS 

coupling between the excited states is assumed.  Further studies are needed to understand this point. 
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Figure 33: (a) Angular dependence of the ESR spectral parameters for all three crystal oreintations of      measured at room 
temperature. Solid lines represent fits to models described in text. (b) Measured spectra for all three orientations of the applied 
magnetic field. Solid lines are to models described in text. 

Temperature dependence of the representative X-band ESR spectra measured on cooling is shown in Figure 

34a for      a*. The spectrum retains nearly Lorentzian lineshape over entire temperature range even when 

the linewidth becomes comparable or larger than the resonant field. However, on cooling the ESR spectrum 

broadens and becomes virtually unobservable due to the extreme broadening for temperatures below 20 

K, i.e., already well above the Neel temperature TN. This is likely the consequence of the developing short-

range correlations, which imply a magnetically low-dimensional nature of the system, in agreement with the 

magnetic susceptibility measurements. Intensity of the ESR signal ESR between the room temperature and 

130 K follows a Curie-Weiss dependence equation (4.1) for all three orientations, and the obtained values 

for CW and C only marginally vary with the crystal orientation. For      c we find CW = -151(10) K and C = 

38.8 (3) Am2 K/(T mol) (eff = 5.57(5) B) and for       a* CW = -141 (10) K, C = 39.0 (3) Am2 K/(T mol) (eff = 

5.56(5) B). The linear fits of the inverse ESR susceptibility are represented by a solid line in the inset to 

Figure 34c. The obtained Curie-Weiss temperatures deviate from the values deduced from magnetic 

susceptibility data and the published SQUID data (16). This is most likely due to very large spectral linewidth 

compared to its resonant position, making it difficult to estimate the exact signal intensity. On the other 

hand, the effective magnetic moment estimated from the Curie constants (eff 5.6 B) corroborates well 

with the magnetization data, as it departs only 10 % from the expected value (eff = 5.92 B) for Fe3+ S = 5/2.  
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Figure 34: Above: temperature dependence of ESR spectra for (a)       a* and (b)       c. Below: temperature dependence of ESR 
spectral parameters for strong (left two columns) and weak (right column) signals. 

Below 70 K deviation from the Curie-Weiss behaviour becomes more significant, the ESR(T) slightly 

flattens, but does not exhibit a maximum as observed in susceptibility measurements. Again, we believe that 

this is the consequence of the large linewidth, which makes the estimation of the ESR intensity increasingly 

difficult with decreasing temperature. This is evident from the temperature dependence of the ESR linewidth 

H1/2 (Figure 34c). With decreasing temperature the ESR linewidth for all crystal orientations monotonically 

increases in the entire temperature range. Below 100 K, linewidth starts to diverge and for instance at 20 K 

the linewidth amounts already 380(15) mT and 490(20) mT for      a* and      c respectively. In order to test 

the development of the spin correlations with decreasing temperature, we show in the inset to Figure 34c 

temperature dependence of the parameter H1/2ESRT. This parameter should be in the paramagnetic state 

temperature independent, as spin correlations are not yet developed. With the onset of short-range 

a b 
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ordering and accompanying spin correlations we would thus expect H1/2ESRT to increase. The measured 

H1/2ESRT is actually very weakly temperature dependent between room temperature and 45 K. However, 

below T 45 K (4 TN), parameter H1/2ESRT starts to increase with decreasing temperature, which is likely 

related to the development of two-dimensional spin correlations, in general agreement with the observed 

maximum in the magnetic susceptibility (Figure 32, (16)). We stress here, that such effects are not 

uncommon to two-dimensional antiferromagnets with pronounced magnetic anisotropies and geometrical 

frustration (114). In contrast to ESR(T) and H1/2(T) temperature dependences BC(T) is constant (334 mT for 

    a* and 336 mT for      c) to the accuracy of 0.5 mT between the room temperature and 150 K, where it 

slowly starts increase with decreasing temperature (Figure 34b). Below 150 K, a detailed inspection for      c 

reveals two inflection points. The first, at 130 K, we ascribe to the mixing of the signal with the weak signal 

(marked with an asterisk in Figure 34a) and has no physical sense. However, the second one, at 70 K, where 

BC starts to shift significantly, possibly resembles the evolution of weak internal fields due to onset of the 

short-range magnetic ordering. At this point we stress that the weak signal observed at lower temperatures 

most likely corresponds to some paramagnetic impurity and its anomalous behaviour around 130 K (Figure 

34b) is related solely to the overlap with the main ESR signal. On the other hand, for     a* the weak signal is 

even fainter and can be noticed only below 80 K. Hence, the first inflection of the BC(T) occurs only then. To 

our surprise the second inflection point, indicating the evident shift of the BC, is found at significantly lower 

temperatures, i.e., at 45 K. This suggests that the internal fields along the a* start to evolve at lower 

temperatures, implying that short-range effects in this direction are delayed compared to      c, in 

concurrence with the layered topology of FeTe2O5Br system. Clearly, the magnetic response is strongly 

anisotropic and depends on the orientation of the external magnetic field, i.e., at 30 K, for      a* BC is 355(5) 

mT and 378(5) mT for      c.  

4.2.3 Specific heat 

Specific heat measurements were performed in the temperature range between 30 K and 0.3 K on the 

standard Oxford instruments PPMS setup with closed cycle cryostat, using the He3 “cooling machine” for 

reaching the temperatures below 1.5 K. 

A sharp anomaly in the temperature dependence of the specific heat was found at TN due to the onset of the 

magnetic ordering. In order to determine the temperature dependence of the magnetic heat capacity Cmag, 

Clatt has to be estimated first (following the procedure described in section 3.2). Since no diamagnetic 

isostructural compound is available, we simulated the raw heat-capacity data above the TN with Clatt 

according to equation 3.35, which yielded 9NkB = 185 J/(K mol) and D = 120 K (red line in Figure 35a). 

Unfortunately this estimation of the Clatt is very rough, since our data is limited to T < 30 K, whereas the 

short-range ordering effects are expected up to 50 K, where the maximum in the magnetic susceptibility is 

observed. Nevertheless, the obtained D has a very reasonable value and is comparable to the values found 

in literature for doped telluride glasses (115), (116). In the next step, we subtracted the approximated lattice 

contribution from the raw heat-capacity data to obtain the magnetic contribution to the heat capacity Cmag 

(Figure 35b). The expected peak in Cmag at TN is clearly visible, while the magnetic contribution to the heat 

capacity extends, well above TN. This underlines the importance of the magnetic short-range ordering effects 

and confirms the low dimensionality of FeTe2O5Br. The experimentally obtained total entropy (equation 

3.39) value 4.0(1) J /(K mol) (Figure 35b) represents only 26 % of the value R ln(6) = 14.9 J /(K mol) expected 

for the ordering of full magnetic Fe3+ (S = 5/2) moments, i.e., the obtained value correspond to only 1/8 of 

the full Fe3+ (S = 5/2) magnetic moment. This discrepancy is huge and is most likely the consequence of the 

naive estimation of the Clatt, where we assumed that the magnetic short-range ordering contribution above 

25 K is negligible. Additionally, the peak in Cmag at TN is very narrow and its integral is only marginal part 
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compared to the complete Smag. The last two remarks bring us to the following conclusion: the short-range 

ordering starts to build up already above 30 K, therefore at TN magnetic ordering within the layers is rather 

well developed and during the magnetic transition, when the long-range order is established, relatively small 

part of the entropy is released. We stress that no other anomaly was observed down to 0.3 K, implying there 

is no other phase transition. 

a  b  

Figure 35: (a) Temperature dependence of measured specific heat, cp, and calculated one according to the Debye approximation 

(D = 120 K and the scaling factor 9NkB = 185 J/(mol K)). (b) Magnetic contribution to the specific heat (solid squares - left scale), 
obtained by subtraction of the estimated lattice contribution and derived magnetic entropy (empty circles – right scale). 

4.3 Low-temperature magnetic ordering 
In this section we present our investigation of the magnetic ordering in the FeTe2O5Br system. The study is 

based on the neutron scattering experiments accompanied by complementary techniques, such as + spin 

relaxation and nuclear quadrupolar resonance measurements. 

4.3.1 Neutron scattering 

In order to solve the low-temperature magnetic structure we carried out zero-magnetic-field single-crystal 

and powder unpolarised and polarised elastic neutron scattering experiments. All measurements using 

unpolarised neutrons were performed at the Swiss Neutron Spallation Source, Paul Scherrer Institute, 

Switzerland, while the spherical neutron polarimetry measurements were performed at the Institute Laue-

Langevin, France.  

4.3.1.1 Powder neutron diffraction 

Magnetic wave vector has been determined by performing elastic neutron diffraction measurements in the 

temperature range between 1.5 K and 100 K on a powder sample of the isostructural FeTe2O5Cl system, 

where similar magnetic ordering is expected. Measurements were performed on 4 g of FeTe2O5Cl powder 

sample on DMC powder diffractometer ( = 2.46 Å) at the Swiss Neutron Spallation Source (Switzerland) 

using the He cryostat. In order to expose the reflections in the diffraction pattern coming from the magnetic 

ordering (magnetic reflections), we subtracted the diffraction pattern measured at 20 K (above the TN), from 

the one measured at 1.5 K (well below the TN) (Figure 36a). Since the intensities of the reflections, coming 

from the scattering from the atom nuclei (nuclear reflections), do not change perceptibly in this temperature 

range, we obtained the magnetic scattering pattern (Figure 36a), reflecting the low-temperature magnetic 

structure. 

In Figure 36b we show the temperature evolution of the magnetic-only scattering pattern, where nuclear 

part (20 K pattern) has already been subtracted. The temperature dependence of the diffraction pattern 

reveals that magnetic reflections suddenly emerge below TN at the incommensurate positions described by 
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the wave vector    = (1/2 0.463 0). Discrepancy from the (1/2 1/2 0) value indicates that the magnetic 

ordering along the b-axis does not match the crystal lattice, implying a complex magnetic structure, i.e., the 

magnetic structure is either cycloidal, helical or amplitude modulated. 

On the other hand, comparison of the diffraction pattern measured at the 100 K and the one measured at 20 

K, clearly indicates broad reflections (Figure 37), originating from the diffuse magnetic scattering due to the 

onset of the short-range magnetic correlations. 

a   b  

Figure 36: Powder neutron diffraction pattern for FeTe2O5Cl. (a) spectra measured at 20 K and 1.5 K, inset: subtraction of 20 K 
spectrum from 1.5 K one. (b) magnetic diffraction pattern obtained by subtraction of 20 K spectrum from spectra measured 
between 1.5 K and 16 K. 

 

Figure 37: Diffuse magnetic scattering pattern (blue) obtained by subtraction of 100 K spectrum from the one measured at 20 K. 

4.3.1.2 Single crystal neutron diffraction 

We have continued our investigation of the low-temperature magnetic structure of the FeTe2O5Br system by 

elastic neutron diffraction experiments conducted on the FeTe2O5Br single crystals. The measurements were 

performed using close cycle refrigerator and four-circle mode of the single crystal diffractometer TriCS (λ 

=2.32 Å) at the Swiss Neutron Spallation Source (Switzerland). To determine the magnetic structure factor 

for the low-temperature magnetic structure, we measured a data set of magnetic reflections at 5 K, where 

magnetic moments are almost fully developed. In order to ensure the correct relative intensities, magnetic 

reflections were measured in so called “omega-scan” manner. (Detector stands still, while the sample is 

being rotated around the vertical goniostat axis omega, i.e., omega scan is the one that goes perpendicularly 

to the in-plane scattering vector). This way integrated intensities of 41 magnetic reflections were collected. 

Unfortunately refinement of this data did not converge to a single solution. Therefore, to determine the 

exact magnetic structure, additional measurements were needed. 
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4.3.1.3 Polarized neutron scattering 

A logical step was to employ polarized neutron scattering, as the neutron spherical polarimetry is the most 

sensitive method to determine the arrangement of magnetic moments (96), (117), (118). Data were 

measured on a 7 × 5 × 1.6 mm3 single crystal with CRYOPAD II installed on the IN20 spectrometer (λ = 2.34 Å) 

at the Institute Laue Langeven (Grenoble, France). The crystal was mounted with the c-axis perpendicular to 

the scattering plane and cooled to 1.8 K in a He cryostat. Polarization matrices (Table 5) with elements Pij, (i 

and j are different components of incoming (i=x,y,z) and outgoing (j =x,y,z) polarization, where x is parallel to 

the scattering vector and z is perpendicular to the scattering plane) were measured for 25 hk0 

incommensurate reflections.  

Table 5: As-measured polarization matrices Pij (i - incoming, j - outcoming component of polarization) for two representative 
reflections measured at 1.8 K (32). 

h k l Pi Pix Piy Piz 

1/2 -0.463 0 

x -0.85 (2) 0.05 (1) 0.04 (1) 

y 0.03 (1) 0.83 (1) -0.09 (1) 

z -0.00 (1) -0.10 (1) -0.77 (1) 

3/2 1.537 0 

x -0.927 (4) 0.05 (1) 0.01 (1) 

y 0.01 (1) 0.863 (6) 0.34 (1) 

z -0.04 (1) 0.38 (1) -0.843 (6) 

 

At first sight one can notice that the off diagonal components Pyz and Pzy are very small and slightly increase 

with increasing h or k suggesting that the c-component of magnetic moment is small. 

The combined refinement of polarization components and integrated magnetic intensities (25 and 41 

independent reflections, respectively) using the CCSL code (119) yields an excellent agreement between the 

experimental and calculated quantities (Figure 39). The best solution is an amplitude modulated model 

                             with       being the vector defining the origin of the i-th cell (32), (120). The 

modulation amplitude S0 = 4.02(9) B is the same for all iron sites in the unit cell, but each atom has its 

individual phase kl (Table 6). Magnetic moments of the same site are collinear (Figure 38) and almost 

orthogonal to the wave vector    but their directions on adjacent Fe1 and Fe2 sites are slightly inclined at an 

angle of 7(3) deg (Table 6). We note that the incommensurate long-range magnetic order in FeTe2O5Br likely 

emerges because of the competing interactions within the geometrically frustrated iron tetramers. Finally, 

we highlight that the refined magnetic structure has very low symmetry with only two symmetry elements, 

i.e., 1 and 21y - identity and twofold screw axis respectively, meaning that inversion symmetry of the crystal 

structure has been broken. Thereby a possibility for macroscopic electric polarization has been introduced.  

Table 6: Parameters of the magnetic structure deduced from neutron diffraction experiments. The sites Fe12-Fe14 are obtained 
from Fe11 (0.1184(6), -0.001(1), -0.0243(7)) and Fe22-Fe24 from Fe21 (0.9386(6), 0.296(1), 0.8568(6)) by symmetry elements 21y, i, 

and 21yi. Angles  and , which describe the orientation of the iron magnetic moments, are defined with respect to the a*bc 

coordinate system. Additionally, each spin has individual phase  kl(deg), where index k = 1, 2 counts the sites and the second 
index l = 1-4 counts the atoms within the site. 

   k1 k2 k3 k4 

Fe11-14 100(1) -52(3) 0 55(5) -17(4) 260(10) 

Fe21-24 100(1) -45(3) 10(5) 113(5) -10(11) 274(10) 
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Figure 38: Low-temperature (T = 1.6 K) incommensurate magnetic structure obtained from the refinement of neutron diffraction 
data. Crystallographic positions of the Fe sites and their labelling are given in Table 6. 

 

Figure 39: The agreement between the experimental and calculated quantities E: (left) components of neutron polarization 

matrices E=P and (right) magnetic structure factors E=F. The reliability factors are defined as: R1=E/E and 
2
 = (E)

2
/(Nobservables 

– Nparameters). 

4.3.2  + spin relaxation 

In order to validate the magnetic structure model, we performed  spin relaxation (SR) measurements 

(121). Grinded polycrystalline samples were used in zero-field (ZF) as well as weak transverse-field (wTF 30 

G) SR measurements. These were performed on the GPS spectrometer at the Paul Scherrer Institute, 

Villigen, Switzerland. Data were collected in the temperature range between 2 K and 60 K in a continuous-

flow helium cryostat. 

Typical wTF SR spectra are shown in Figure 40a. The muons that stop at interstitial sites in the sample are 

initially 100 % polarized and start precessing in the local magnetic fields       . In the paramagnetic phase + 

moments coherently precess around weak external magnetic field as shown by the slow oscillations of + 

asymmetry Figure 40a. However, in the magnetically ordered regions the internal magnetic field is much 

larger than wTF of 30 G and causes a reduction of the oscillations’ amplitude after short initial times. The 

remaining oscillating amplitude reflects the portion of muons, which are not coupled to strong static internal 

magnetic fields. Its temperature evolution is shown in Figure 40b, which is obtained after fitting wTF 

relaxation data to 

                      
        (4.8)  
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Here A0 denotes initial asymmetry, /2 = 13.55 kHz/G is muon gyromagnetic ratio, HwTF = 30 G and       

denotes transversal relaxation. B is time-independent background corresponding to a "1/3"-tail, originating 

from muons in the ordered phase whose polarization is parallel to internal field. Amplitude parameter A0 

decreases dramatically below the Neel temperature TN = 10.6 K due to the development of static long-range 

magnetic order. Surprisingly, the residual oscillations, corresponding to the fraction of paramagnetic regions 

with rapidly fluctuating Fe3+ moments, are present even far below TN. This suggests the coexistence of 

paramagnetic and magnetically ordered regions and could signalize a first-order magnetic transition. Then 

again, this fluctuations may account for the reduced size of Fe3+ moments observed in the neutron 

diffraction experiments, where the amplitude of the modulation waves is S0 = 4 B, i.e. much less than it 

would be expected for a spin 5/2 system. It is rather unusual for a nearly classical spin system to display such 

fluctuations at very low temperatures; however, in FeTe2O5Br the geometrically frustrated structure of 

[Fe4O16]
20- spin clusters may be responsible for that. On the other hand, we notice also a considerable wTF 

amplitude reduction for T > TN. This implies the presence of short-range order effects, which can be traced as 

high as 20 K, i.e., to temperatures largely exceeding TN. Such behaviour is expected in low-dimensional 

magnetic systems, which agrees with ESR, magnetization, and neutron diffraction data as well as the 

FeTe2O5Br crystal structure and thus confirms the expectations of weak interlayer coupling in this 

compound. 

 

Figure 40: (a) Temperature dependence of weak transverse-field (30 G) 
+
 asymmetry decay in polycrystalline FeTe2O5Br. Solid 

curves represent fits to the model (equation (4.8)). (b) Temperature dependent "unfrozen part" representing the fraction of 

muons not detecting static internal magnetic fields. (c) Zero-field 
+
 SR decay in FeTe2O5Br. Solid curves above TN = 10.6 K are fits 

to the stretched exponential model (equation (4.9)), and to the model  incommensurate (equation (4.10)), below TN. (d) 

temperature dependence of the longitudinal 
+
 relaxation rate in the paramagnetic phase obtained from the stretched 

exponential fit. Inset shows the corresponding stretched exponent . 

Next we move to ZF SR. Monotonically decaying ZF spectra are recorded above TN Figure 40c. These spectra 

can be simulated with the stretched exponential function 

          
      

 
  (4.9)  

where L denotes the ZF longitudinal relaxation rate. Stretched exponent  = 1 (Lorentzian relaxation) is 

typical for quickly oscillating electronic fields while  = 2 (Gaussian relaxation) is regularly observed for static 

nuclear fields. In FeTe2O5Br at around 50 KL = 0.13 ms-1 and the exponent approaches  = 1.2 (inset to 

Figure 40d), suggesting that both channels are active at high temperatures, whereas the dynamical 

relaxation channel is greatly enhanced when temperature is lowered towards TN Figure 40d, i.e.,  = 0.58 

and L = 0.26 ms-1 at 11 K. We assign this to critical Fe3+ fluctuations, which are present up to 2TN as implied 
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by short-range order effects observed in the wTF measurements. The small value of  in the vicinity of TN, 

which is below 1, signals multiple non-equivalent + sites. 

Below TN clear oscillations are observed in ZF spectra Figure 41a, proving the presence of static internal 

magnetic fields of electronic origin. The low-temperature spectra reveal the presence of at least two 

oscillating frequencies Figure 41a, corresponding to two muon sites. This is in line with the symmetry of the 

little group of FeTe2O5Br (section 4.4.4). Namely, magnetic order dismisses the inversion-center symmetry 

thus making pairs of crystallographically equivalent sites magnetically non-equivalent. Additionally, because 

the magnetic order is incommensurate, as evidenced by neutron diffraction, a distribution of muon 

precession frequencies is expected for each site.  

 

Figure 41: (a) Comparison of incommensurate model (equation (4.10)) with recorded ZF muon relaxation at 2 K. (b) Temperature 
dependence of + spin precession frequency obtained from ZF relaxation fits (solid circles) and Fourier transform (open squares), 

compared to the |T – TN|  law with = 0.21. 

Unfortunately, the exact muon stopping sites in FeTe2O5Br are not known, and consequently we could not 

calculate exact field distributions. Hence, in order to analyze the low-temperature ZF  data we assumed 

the model, corresponding to incommensurate spatially inhomogeneous magnetic fields, which are spread 

between 0 and Hmax (122), 

           
  

 

 
         

    
 

 
 

 

   

  (4.10)  

where J0 denotes the zero-order Bessel function of the first kind. The agreement between the experimental 

data and fit to equation (4.10) is good (Figure 41), which speak in favour of our magnetic structure model. 

In (Figure 41b) we plot the temperature dependence of the  precession frequency of the component with 

the largest fraction and most obvious frequency, which can be explained with |T – TN| law (solid line in 

Figure 41b). The obtained   0.21(5) reflects the evolution of the average amplitude of the local fields at 

one of the muon sites, which are induced by the evolving Fe3+ (S = 5/2) magnetic moments. In spite of that, it 

is naive to assume that the estimated  is the critical exponent of the magnetic order parameter, as we lack 

key experimental points in the vicinity of TN, where |T – TN| law should actually apply. Additionally, we 

calculated Fourier transform (FT) of the  asymmetry curves and determined the average precession 

frequency of the same muon site from the first moment of the (FT) spectra. Not surprisingly, both 

approaches lead to qualitatively similar results. 
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In conclusion, local-probe wTF and ZF SR measurements on the magnetoelectric FeTe2O5Br compound 

revealed pronounced short-range ordering effects up to 20 K. Below TN a broad distribution of the local 

magnetic fields experienced by muons is found, confirming the incommensurate nature of the long-range 

magnetic order; however, details of the magnetic ordering cannot be extracted, since the exact muon 

stopping sites are unknown. 

4.3.3 Nuclear quadrupolar resonance 

In order to get additional information about the specific features of the low-temperature magnetic structure, 

we decided to measure nuclear quadrupolar resonance (NQR) on 79,81Br nuclei. This phenomenon is observed 

since both Br nuclei have S > 1/2 and therefore have non-zero quadrupole moment, Q(79Br) = 31.3×10-30 m2 

and Q(81Br) = 26.2×10-30 m2 (79Q/81Q = 1.19). For this reason, the energy levels are split in the electric field 

gradient (EFG) induced by the surrounding atoms and hence the resonant absorption might be observed 

even in the absence of an external field. However, when magnetic order in the studied compound is 

established, local magnetic field at Br site will appear and alter its NQR spectrum. Since local fields at Br site 

are a result of dipolar as well as hyperfine fields coming from Fe3+ (S = 5/2) magnetic moments, it is not 

trivial to extract the complete information about the magnetic ordering. 

In order to find the NQR frequencies Q, first EFG tensors for both Br sites (1,2) were calculated using density 

functional theory (DFT) (Table 7). For Br1 results yield rather small asymmetry parameter,  = 0.09, 

suggesting almost uniaxial form of the EFG tensor, while the calculated Q = 154.97 MHz is enormous. For 

Br2 on the other hand, the calculated,  = 0.58, reflects strongly anisotropic EFG, whereas the Q = -42.32 

MHz is more than 3 times smaller. We stress, that DFT calculation results reflect the local surrounding of the 

Br sites, i.e., the Br1 has only one ion in the neighbourhood (section 4.1), which is probably the reason for 

almost uniaxial EFG and a small , whereas the Br2 has two ions in the vicinity, causing  the asymmetry and 

consequently result in a large  value.  

Table 7: Values for EFG tensors at Br1 and Br2 sites in units of 10
21

 V/m
2
 in obtained by DFT calculations, where x, y, z correspond 

to a*, b, c, respectively. 

Br1 Br2 

-15.8353 13.9572 -14.8939 2.96904 0.47202 -2.45593 

13.9572 7.00619 -34.5642 0.47202 3.35194 -10.6256 

-14.8939 -34.5642 8.82908 -2.45593 -10.6256 -6.32098 

 

Based on the estimated resonance position values obtained from the DFT calculations, we were able to find 

in the paramagnetic state all four resonances for 81Br2, 79Br2, 81Br1, and 79Br1 (Figure 42a). The DFT 

calculations proved to be very accurate, as the calculated values deviated from the measured values for only 

10 % (+8.3 % for Br1 and -12 % for Br2 site). In Table 8 we give some characteristic data for signals obtained 

at 80 K. All spectral lines can be reasonably well explained by a simple Gaussian distribution with the width 

of 0.13 MHz. However, at both Br-sites, there is an additional broad, square like, contribution with a width 

of 2 MHz and centred 0.2 MHz lower in respect to the sharp line. This part contains approximately 20 % 

of the whole signal intensity (Figure 42), and hence represents a considerable portion of the sample. 

Focusing now on the main part of the signal (sharp Gaussian line) and comparing the values for the spectral 

width 1/2, T1 and T2 for different isotopes, we can clearly state that the leading relaxation process at both 

crystallographic sites is magnetic. This comes from the fact that all three parameters scales almost exactly as 

(79 /81)–2 = 1.162, where 79 = 10.6663 MHz/T and 81 = 11.4978 MHz/T are the gyromagnetic ratios, for 79Br 

and 81Br respectively. 



74 

Table 8: 
79,81

Br NQR parameters obtained at T = 80 K. 

Site 81Br2 79Br2 81Br1 79Br1 

 (MHz) 39.2 46.7 167.2 200.15 

1/2 (MHz) 0.119 0.141 0.143 0.167 

T1 (ms) 0.275 (0.025) 0.315 (0.05) 1.28 (0.05) 1.45 (0.11) 

T2 (s) 215 (55) 265 (55) 290 (40) 320 (70) 

1/2 (
79Br2)/ 1/2 (

81Br2) 1.185 1.168 

T1(
79Br2)/ T1(

81Br2) 1.145 (0.29) 1.133 (0.13) 

T2(
79Br2)/ T2(

81Br2) 1.233 (0.57) 1.100 (0.39) 

 

a  b  

Figure 42: Temperature dependences of the 
81

Br nuclear quadrupole resonance spectra at both crystalographically inequivalent 
positions (a) Br1 and (b) Br2, measured at 80 K. 

Now we focus on the temperature dependence of the 81Br signal. On cooling from room temperature to TN1, 

resonance position for both Br-sites monotonically shifts to higher frequencies (Figure 43a). This most likely 

reflects the lattice contraction, which manifests in an increase of the EFG. The resonance at Br2-site shifts for 

(Br2) 0.8 MHz, whereas at Br1-site (Br1) 2.8 MHz, hence the ration (Br1)/(Br2) = 3.5 is close 

to the ratio between the measured quadrupolar frequencies at room temperature Q(Br1)/Q(Br2) = 4.3. 

a  b  

Figure 43: (a) Temperature dependence of 
81

Br NQR line position for Br1 and Br2 sites. (b) Temperature dependence of 1/T1 
measured for 

81
Br resonance at Br1-site. Inset: high-temperature region of 1/T1 emphasising the linerar dependece indicated with 

solid line. 

This implies that relative change of the EFG at both Br-sites is similar, suggesting that lattice distortions are 

also alike. To be precise, approximately 20 K above TN, the shift slowly decreases, most likely due to the 
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onset of the short-range order correlations. This is even more obvious from the 1/T1 temperature 

dependence (Figure 43b). On cooling from room temperature a monotonic slowing down of magnetic 

relaxation is detected, i.e., 1/T1 is actually proportional to the temperature down to 40 K (inset to Figure 

43b). As evident from the equation 3.34 this indicates that in this temperature region the spin correlations 

are temperature independent, implying that we are in the paramagnetic regime. However, on further 

cooling 1/T1   T dependence is broken, which designates the development of spin correlations, most likely 

associated with the onset of short-range ordering within the crystal layers. This is even more pronounced 

below 25 K, where the relaxation process speeds up and exactly at TN, 1/T1 reaches a singularity, 

corresponding to the onset of long-range magnetic ordering. Of course, at TN, NQR spectra dramatically 

changes. The sharp paramagnetic signal begins to fade away (Inset to Figure 44a), whereas a broad signal, 

with seemingly symmetrical U-shaped spectra (Figure 44) evolve. The observed U-shaped line can be 

explained by assuming a sinusoidal dependence of the NQR shift along the magnetic wave vector: 

                ⋅       . Here Q is the quadrupolar frequency and           ⋅        is the shift due to the 

modulation of the local magnetic field arising from the coupling with nearby Fe3+ magnetic moments. In the 

case of commensurate order,       ⋅        would take discrete values and would result in a spectrum 

composed of a finite number of sharp lines. However, when magnetic order is incommensurate,       ⋅        

takes all values between –1 and 1 so that the spectral intensity is continuously distributed between the two 

singularities, occurring at      . Coming back to the experimental results, we can see that the width of the 

spectra at half maximum for the Br1-site is 1.7 MHz, whereas the distance between the singularities is 0.9 

MHz. For Br2-site the spectra is broader, i.e., the width at half maximum is 3 MHz, and the distance 

between the singularities is 2 MHz. The splitting (between the singularities) implies that the projections of 

the hyperfine fields at the 81Br sites to the principal axis of the EFG tensor are Bhf = 0.08 T and Bhf = 0.094 T 

for Br1 and Br2 sites respectively. Just 0.4 K below TN the spectra change again, indicating a second magnetic 

transition. We note that from this point on we will name the temperature of the first magnetic transition TN1, 

and TN2 the temperature of the second magnetic transition. So, above TN1, the system is in the paramagnetic 

(PM) state, between TN1 and TN2 we have a high-temperature magnetic phase, which seem to be 

incommensurate (HT-ICM), and below TN2 low-temperature (LT-ICM) magnetic phases is present. In LT-ICM 

phase, spectrum at Br1-site develops even clearer U-shape with two very distinct singularities, characteristic 

for an incommensurate magnetic structure. Actually, at lowest temperature (4 K), spectrum is a bit more 

complicated. On the outside side of the singularities, now almost 3.1 MHz apart (Bhf = 0.145 T), two 

shoulders, which extent more than 1.5 MHz, evolve. Additionally, the spectral intensity seems to drop with 

the increasing frequency. In Figure 44c,d we plot the temperature evolution of splitting between the 

singularities, which give us an estimation of the hyperfine fields and consequently the magnitude of the 

evolving Fe3+ (S = 5/2) magnetic moments, i.e., magnetic order parameter. Obviously the magnetic order 

parameter displays a (TN – T) behaviour, though, due to the lack of the experimental points, the estimation 

of (Br1) = 0.26(4) and (Br2) = 0.40(5) might be misleading and difficult to interpret. Actually, both values 

should match; hence our uncertainty about meaningfulness of these values is justified. In contrast to Br1-

site, for Br2-site the symmetry of the spectrum in the LT-ICM phase is lost. With decreasing temperature 

three different and almost completely separated U-shaped lines evolve (Figure 44b). At 9 K, the low-

frequency line is well separated and has a U-shape with additional shoulders similar as the low-temperature 

Br1-line. Here the singularities are 1.3 MHz apart, left shoulder extent for 0.8 MHz, whereas the right 

shoulder extent only for 0.5 MHz. The middle line seems to be the widest, as the two singularities are 1.9 

MHz apart. Here it is difficult to say much about shoulders since the line overlaps with the high-frequency 

one. This line has singularities separated for only 0.8 MHz, and do not seem to have pronounced shoulders. 

At 4 K all three lines broadens even more. The lowest frequency line has singularities 1.5 MHz apart and 1.2 
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MHz wide left and 0.6 MHz wide right shoulders. The middle line, with singularities 2.8 MHz apart, now 

strongly overlaps with high-frequency line, which has singularities separated for 1.2 MHz. 

a c   

b d  

Figure 44: NQR spectra measured between 15 K and 4 K at (a) Br1-site and (b) Br2-site, and the temperature evolution of the 
singularities for (c) Br1-site and (d) Br2-site. 

In order to understand the difference in the spectra for Br1 and Br2 sites in the LT-ICM phase, which 

magnetic structure is determined from the neutron diffraction, we first look at the crystal structure of our 

sample. As already mentioned in the section 4.1 the Br1 sites are coupled to only one Fe ion, while Br2 sites 

are coupled to three Fe ions. However, a simple explanation that coupling to one Fe site would result in one 

line and coupling to three Fe sites results in three lines is wrong. One must not forget that coupling to one or 

several magnetic ions cannot change the Q and consequently split the spectra, i.e., the hyperfine coupling 

always result in a local magnetic field. However, this can have very complex spatial dependence. At this point 

we stress that in the magnetically ordered phase, magnetic moments at all Fe sites in the crystal unit cell 

(there are eight of them) have different phases of their amplitude modulation waves. Hence, we can expect 

that the resulting hyperfine fields at the Br2 sites might indeed have very complex spatial dependence, 

which can give rise to an unusual field distribution at Br2 site. In addition the calculated EFG tensor for Br2 

site has a large  value, which furthermore contributes to the complexity of the NQR spectra. At last we 

should stress that the spectra are finally altered by dipolar fields, with an extraordinary spatial distribution. 

To investigate the origin and nature of the observed spectra, we performed also detailed measurements of 

T1 and T2 relaxation times along the low-temperature spectra. We show 81Br dependences of 1/T1 and 1/T2 

for both Br sites on Figure 45. Obviously, both relaxation times have non-trivial frequency dependence which 

is in a way correlated with the spectral intensity. For Br2 site spin lattice relaxation 1/T1 seems to be 

inversely proportional to the spectral intensity, i.e., it has minima on top of the most pronounced spectral 
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singularities, where 1/T1 is 1.46(2)-2.02(2) ms-1, while it increases up to 9(3) ms-1 (Figure 45) in between. 

Similar dependence is also found for spin-spin relaxation 1/T2, though its values are a bit larger, i.e., 1/T2 

varies between 3.3(2) ms-1 on top of singularities to 20(5) ms-1 among them. Similar behaviour along all three 

lines implies that the spectrum actually corresponds to the crystalographically same site, and that its 

complex triple structure is merely the consequence of the non-trivial spatial dependence of the local 

magnetic field, resulting from hyperfine coupling with Fe3+ (S = 5/2) magnetic moments as well as their 

dipolar fields. At Br1 site, 1/T1 is almost an order of magnitude shorter and interestingly shows just the 

opposite behaviour. On top of each spectral intensity singularities it has maximum (1/T1 = 3.8(1) ms-1), while 

it has a minimum (1/T1 = 0.19(1) ms-1) in the middle. 1/T2 on the other hand, behaves almost exactly as at 

Br2 site. It is not much shorter and its minima coincide with spectral intensity singularities, reaching 2.1(4) 

ms-1 and 6.3(5) ms in between. We note that almost identical behaviour was found for 79Br at both sites. 

The explanation for the observed behaviour of 1/T1 at Br1 site might be the following. The maxima in the 

spectral intensity correspond to the Br sites in the vicinity of maximally developed Fe3+ (S = 5/2) magnetic 

moments, whereas the central part of the spectrum corresponds to the Br sites close to Fe’s with almost no 

magnetic moment developed. This difference also influences the relaxation processes and hence reflects in 

the measured 1/T1. At sites, where Fe3+ (S = 5/2) magnetic moments are fully developed, the lowest energy 

excitations and therefore also the driving relaxation mechanism would be phasons. The phason represents 

the sliding of the incommensurate modulation wave and therefore corresponds to the Goldstone mode 

(gapless), recovering the broken translational periodicity of the ICM phase. Actually in real systems, discrete 

lattice effects and impurities may produce a locking of the modulation wave to the under lying lattice and 

hence introduce the gap in to the phason spectrum (123), making 1/T1 < ∞. On the other hand, at sites 

where Fe’s have almost no magnetic moment developed the relaxation process is driven by amplitudons, 

i.e., the excitations of the amplitude of the Fe3+ (S = 5/2) magnetic moment. These excitations are expected 

to be more costly, since they have to compete with the superexchange interactions, hence also the expected 

1/T1 is shorter. This interpretation is in agreement with the proposed incommensurate amplitude modulated 

magnetic structure of the LT-ICM, and thus corroborates with neutron diffraction measurements. 

On contrary the observed relaxation rates at Br2 site cannot be so easily explained. We stress that the Br2 

spectrum is a result of no-trivial local magnetic field, which is a combination of three hyperfine fields coming 

from different modulation waves and therefore varies in magnitude as well as in orientation. Hence the 

maxima and minima in the Br2 spectrum cannot be associated solely to the magnitude of Fe3+ (S = 5/2) 

magnetic moments, making it impossible to identify the relaxation process at specific spectral position. 

a b  

Figure 45: 1/T1 and 1/T2 relaxation rates measured along the 
81

Br spectra for (a) Br2 and (b) Br1 sites. 
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Now we try to simulate the low-temperature NQR spectra considering the calculated EFG tensors (Table 7) 

scaled by the appropriate factors obtained from the deviation of the NQR resonances in the paramagnetic 

phase (+8.3 % for Br1 and -12 % for Br2 site) and the magnetic structure model obtained from the neutron 

diffraction measurements (Table 6). Calculations were performed according to the procedure explained in 

the section 3.1.2.3 considering different transferred hyperfine coupling tensors for each hyperfine pathway, 

dipolar fields produced by Fe3+ (S = 5/2) magnetic moments as well as calculated EFG tensors (Table 7). 

Hence we are left with 18 free parameters for Br2 site and 6 for Br1 site to describe the NQR spectra. The 

obtained fits for both Br sites are shown in Figure 46 (in case of Br2 we show the complete spectra for 81Br as 

well as 79Br since they overlap at low temperatures). In both cases all the major features (singularities and 

minima) are reproduced, though the agreement is much better for Br1 site. Obviously this is the 

consequence of a simpler spectrum as well as significantly smaller number of free parameters. In this 

respect, we are also confident that the obtained set of fitting parameters is the best solution. The obtained 

parameters for local magnetic field at Br-site per B of the Fe3+ (S = 5/2) magnetic moment induced by 

hyperfine coupling are shown Table 9. However, the fit does not reproduce nicely the shape of the shoulders 

and intensities of singularities. This deviation might be the consequence of neglecting the broad part of the 

spectra observed in the paramagnetic phase (Figure 42) in our simulations. For Br2 spectra the deviations 

are even more pronounced. Even though we can reasonably well reproduce the shape of the spectrum, we 

have difficulties with positions of the calculated singularities and minima. In case of the third line (between 

40 MHz and 42 MHz) strong discrepancy in the spectral intensity is observed, which might have an 

instrumental origin, since no such discrepancy is observed for the line at 48 MHz, coming from 79Br, which 

should behave similar as 81Br line.  

Table 9: Obtained parameters for hyperfine coupling from fitting the NQR spectra in units of T/B. 

Br1-Te2-O3-Fe1 Br2-Te4-O4-Fe2 Br2-Te4-O5-Fe1 Br2-Te2-O3-Fe1 

0.124 -0.004 0.062 0.082 -0.165 0 0.041 -0.082 0 0.041 -0.082 0 

-0.004 0.124 -0.004 -0.165 0.082 0.165 -0.082 0.041 0 -0.082 0.041 -0.082 

0.062 -0.004 0.124 0 0.165 0.082 0 0 0.041 0 -0.082 0.041 

 

a b  

Figure 46: Low-temperature spectra (empty symbols) and fits (line), calculated as explained in text, (a) for Br1 and (b) for Br2 site. 

In order to better understand the origin of so complex spectra, we make here a more pedagogic approach. 

Let us restrict to only one Br ion in its local environment neglecting any local magnetic field. Since Br nucleus 

has a quadrupolar moment, its energy levels will be split due to EFG produced by its diamagnetic neighbours 

(Figure 47). When local magnetic field is applied, these levels will shift, depending on the strength and 
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direction of the local magnetic field, according to equation 3.27 (Figure 47). Now imagine that each of the Br 

nuclei at a particular crystallographic site, e.g., Br12-site (the Br nuclei determined by Br1 position in Table 2 

upon which two fold screw axis is applied), feels different local magnetic field. This is determined by the 

magnitude of the Fe3+ magnetic moment at a particular Fe-site coupled by a transferred hyperfine coupling. 

Considering that amplitude of magnetic moment is actually spatially modulated for our magnetic structure 

model, we end up with a distribution of the Br energy levels, which determine the distribution of the 

resonant frequencies shown in the left sides of Figure 48a and b, for Br12 and Br21 sites respectively. Finally, 

calculating also the probability for each magnetic transition according to equation (3.23) we obtain the 

predicted NMR spectra shown in the right sides of Figure 48a and b. 

 

Figure 47: Splitting of the energy levels of for S = 3/2. For weak local magnetic fields, the splitting of the energy levels is mostly 
determined by the EFG, which is further altered by local magnetic field. In case that quadrupolar and Zeeman interactions are 
comparable, exact diagonalization of the complete Hamiltonian has to be performed to obtain correct eigen energies. 

a b  

Figure 48: Simulated frequency distribution and spectra for individual (a) Br12 and (b) Br21 sites assuming the hyperfine coupling 
constants obtained from fit, as explained in text. 

We must keep in mind that due to the complex magnetic structure, spectrum for Br1 as well as Br2 sites 

should be regarded as a sum of four inequivalent sites with different local field distributions. Additionally, in 

our fitting procedure we have considered also a correction of local fields due to dipole-dipole interactions.  

To sum up, the complexity of the measured spectra (Figure 46) signify that local magnetic field at Br-site, 

which is a sum of dipolar and hyperfine fields, varies in amplitude as well as in orientation. Our analysis also 

shows that transferred hyperfine magnetic field at Br2 site should have a significant c-component, which is 

essential for the occurrence of three lines in the Br2 spectrum, thus implying the importance of the off-

diagonal hyperfine coupling terms.  

4.3.4 Summary of the magnetic ordering 

On cooling, below 20 K, the short-range order is indisputably reflected in the obtained data – diffuse 

neutron diffraction scattering, reduction of the magnitude of the SR oscillations and increasing relaxation 

rate in NQR experiments. Below TN2 = 10.6 K, the system undergoes a magnetic transition into 

incommensurate transverse amplitude modulated magnetic ordering - LT-ICM phase - with eight amplitude 

modulation waves, all having different phases. This magnetic model is in agreement with SR results and 

also explains the complex NQR spectra. We stress that above the LT-ICM there is a narrow interval of 0.4 K 

when the system is in the HT-ICM phase, which will be discussed more precisely in the section 4.5. 

EFG         

Energy 



80 

4.4 Ferroelectric transition and its relation to magnetism 
Evidently, the magnetic structure has no inversion centre (Figure 38). This removes the symmetry restriction 

for the coexistence of ferroelectric and magnetic order.  

4.4.1 Thermal expansion measurements 

In order to investigate a potential existence of ferroelectricity and its impact on the crystal lattice, we 

performed thermal expansion measurements. The measurements were carried out along the c-axis, with 

magnetic field applied also along the c-axis in the temperature interval between 150 K and 4 K in two runs to 

check for reproducibility. The data were taken in warming up employing a low sweep rate of 1.5K/h. 

In Figure 49a a complete temperature dependence of the thermal expansion parameter along c-axis, c, is 

shown. At high temperatures c is positive (at 140 K c = 10×10-6 K-1) and becomes reduced upon cooling, 

which imitates anticipated lattice expansion with increasing temperature (dotted line in Figure 49). However, 

on cooling below 70 K the c behaviour becomes anomalous. At 50 K, c changes sign and exhibits a 

pronounced negative anomaly centred at 20 K. This means that cooling below 50 K is accompanied by an 

expansion of the c-axis lattice parameter. The 20 K anomaly coincides with the onset of short-range 

magnetic ordering detected by experimental techniques probing the magnetic response of the system 

presented in preceding sections. We thus have a first evidence for a spin-lattice coupling, which indicates a 

possible existence of a strong electromagnetic coupling. 

A magnification of the data around 10 K, Figure 49b reveals a very sharp spike around 10.5 K on top of the 

above-mentioned negative contribution. The shape of the transition is lambda like, indicating strong critical 

fluctuations, while its position nicely coincides with the magnetic transition temperature. Thus, we have a 

definite proof that the establishment of the long-range magnetic ordering is accompanied with crystal lattice 

distortion, implying a possible onset of electric polarization. 

a b  

Figure 49: (a) Temperature dependece of the thermal expansion parameter along c-axis c. (b) Magnification of the low-
temperature part. 

4.4.2 X-ray diffraction experiments 

To precisely monitor the changes in the crystal structure during the development of the long-range magnetic 

ordering and to locate the source of a potential electric polarization, we performed low-temperature single-

crystal synchrotron x-ray diffraction experiments at the BM01A Swiss-Norwegian Beamline of ESRF 

(Grenoble, France). Data sets (typically 780 reflections per temperature point) were collected in the 

temperature range between 4.5 K and 35 K at a wavelength of 0.64 Å using a closed-cycle He cryostat 

mounted on a six-circle kappa diffractometer KUMA. 
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On cooling through the magnetic transition, no structural distortions, leading to measurable changes in the 

lattice symmetry or cell metrics, were found. However, the high-quality of the data allowed us to refine (124) 

the atomic positions and to deduce the interatomic distances at each measured temperature. The Fe-Te 

distances, revealed in Figure 50, show clearly distinguishable changes below 10 K, which confirm that the 

crystal lattice responds to the onset of magnetic order. This finding is important because, on one hand, Te4+ 

ions bridge the intercluster superexchange interactions and, on the other, Te4+ ions have lone-pair electrons. 

As already mentioned in the theory section, lone-pair electrons are often stereochemically active and easily 

polarisable. The observed structural anomalies therefore suggest a possible polarization of the Te4+ lone-pair 

electrons, which might result in the macroscopic electric polarization. However, the changes are tiny, in the 

range of 0.03 Å, thus rather small magnitude of electric polarization is expected. 

 

Figure 50: Temperature dependence of Fe-Te distances obtained from the refinement of the X-ray diffraction experiment. 

4.4.3 Dielectric measurements 

The structural investigation of the FeTe2O5Br system (sections 4.4.1 and 4.4.2) evidently shows that changes 

in the crystal lattice coincide with the magnetic transition. We therefore decided to measure the 

temperature dependence of the dielectric constant, , and the electric polarisation, P. The complex dielectric 

constant *(T,) = ´(T,) - i ˝(T,) was measured as a function of temperature and frequency  by using 

an HP4282A precision LCR meter. The dielectric constant was scanned at few frequencies between 20 Hz and 

1 MHz on cooling or heating the sample with the typical cooling/heating rates of 10 K/h in the various dc bias 

electric fields ranging from 0-3 kV/cm. The excitation electric ac field of 100-400 V/cm was applied along the 

a*, b and c axes. The quasistatic polarization (P) was determined by electrometer charge accumulation 

measurements in a field cooling run. Here bias field of 10 kV/cm was used, which was several times higher 

than the coercive field (1 kV/cm) in order to obtain saturated spontaneous polarization. Zero field ac 

dielectric measurements and ac dielectric measurements in the dc electric bias field were performed in the 

Oxford continuous flow liquid helium cryostat. 

 An extremely sharp peak in real part of dielectric constant, ´, at TN = 10.5(1) K (Figure 51a) indicates a 

transition to a long-range ferroelectric (FE) state. At the same time, imaginary part of the dielectric constant, 

˝, is very small and not frequency dependent proving intrinsic nature of the observed transition. The 

ferroelectric state is unambiguously confirmed by the emergence of spontaneous polarisation (Figure 51c) 

measured using an electrometer charge accumulation technique (108), (107) and the reversal of 

spontaneous polarization with the electric field (Figure 51b). The spontaneous polarization is largest along 

the crystal c-axis, P(c) = 8.5(2) C/m2, and is almost an order of magnitude smaller in a*, P(a*) = 1.0(1) 

C/m2, while for the b direction it is below the sensitivity of our experimental equipment. Comparing the 

temperature dependence of P to the intensity of the magnetic (1/2 1.537 0) peak, I, it is obvious that the two 

transitions coincide (Figure 51c). 
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Figure 51: (a) Temperature dependence of the change in the dielectric constant =  (T) -(14 K) measured for       c in zero 

magnetic field. (b) Ferroelectric hysteresis loop for       c measured at 5 K. (c) Temperature dependence of the spontaneous electric 

polarisation      for       c (open cyrcle , right-hand scale) and the intensity of the (1.5, 1.537, 0) neutron diffraction magnetic peak I 
(solid cyrcle, left-hand scale). I and P calculated from equations (4.14) and (4.15) are presented with solid line and dashed line, 

respectively, for  = 0.15. (d) A linear correlation between    and P.  

The sharpness of the anomaly in the ´ implies that the ferroelectric transition might actually be first-order 

one, meaning that the symmetry of the LT-ICM/FE phase might be completely different compared to the 

paramagnetic phase. This is in agreement with the temperature evolution of the ferroelectric order 

parameter P, which can be described with P α (TN – T), where  = 0.17(2) is very small compared to the 0.23, 

0.33 values typical for second order transitions for 2D and 3D ordering. However, there is no sign of the 

temperature hysteresis implying that the transition is at most weakly first transition, and hence we believe 

the symmetry relation between disordered and ordered magnetic phases is retained. We stress that when 

magnetic field was applied along the a* direction, both the Néel-transition and the ferroelectric-transition 

temperatures simultaneously decrease (Figure 53, Figure 64), proving the presence of the magnetoelectric 

coupling in FeTe2O5Br. 

Considering now also the observed structural anomalies (Figure 49, Figure 50), we suspect that the observed 

electric polarization is likely to originate from asymmetric distortions of the Te4+ lone-pair electrons induced 

by the onset of the LT-ICM phase, which brakes the global inversion symmetry. Moreover, the detected 

changes of the tetramer Fe-O interatomic distances imply that the coupling between polar and magnetic 

order parameters is likely mediated through Fe-O-Te-O-Fe intercluster superexchange. We stress, that the 

standard spin-current (62) and ‘‘inverse Dzyaloshinskii-Moriya’’ (63) models developed for spiral magnetic 

structures are unlikely to be active in FeTe2O5Br, since magnetic moments vary in amplitude and not in 

direction along   . Alternatively, the exchange-striction model was frequently applied to magnetoelectrics 

with collinear magnetic order (64), (65), (66), (67). 

4.4.4 Theory of the magnetoelectric coupling 

The phenomenological explanation for the occurrence of the magnetoelectric effect in incommensurate 

helical or spiral magnetic phases has been given with thermodynamic potential terms of type     

       ⋅            ⋅         (58). For our magnetic structure (Table 6) we calculate that     should lie in the a*b 
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plane in striking contrast to the experimentally observed        component. We next extended calculations by 

an additional    ⋅         term, which is important when     is a sum of homogeneous and spatially modulated 

contributions (59). However, this additional term also cannot reproduce the correct     direction. Hence, it 

appears that coupling terms, which work very well for helical or spiral magnetic orderings, cannot explain 

the appearance and the correct direction of the ferroelectric polarization in FeTe2O5Br. 

In order to better understand the magnetoelectric coupling in FeTe2O5Br we proceed first with the 

representation analysis. The crystal group of our system is P21/c, hence it has four symmetry elements: 

identity 1 (x, y, z), twofold screw axis 21y (-x, 0.5+y, 0.5-z), inversion centre (-x, -y, -z), and the combination of 

the last two – the mirror plane my (x, 0.5-y, 0.5+z). The star of the wave vector is formed by the two vectors 

   and    , defining the little (magnetic) group, which is therefore composed of only two elements, namely 1 

and 21y, i.e., inversion symmetry is lost. Consequently, the little group has two one-dimensional irreducible 

representations, 1 and 2, and the 4(e) sites are split into two orbits (Table 10).  

Table 10: Results of representation analysis for      = (0.5 0.463 0) in P21/c. Complex basis vectors of magnetic moments for atoms 1 

(x, y, z) and 2 (-x, y+1/2, -z+1/2) from the same orbit (         ) for 1 and  2. 

Orbit/symmetry operation 1 2 

1 / 1 (1 0 0) (0 1 0) (0 0 1) (1 0 0) (0 1 0) (0 0 1) 

2 / 21y (-  0 0) (0   0) (0 0 - ) (  0 0) (0 -  0) (0 0  ) 

 

The resulting Fourier components of the magnetic moment for atom 1 and 2 hence depend on the choice of 

the irreducible representation. Assuming that the magnetic moments lie in the ab-plane, we write the 

Fourier components of the magnetic moments for both atoms corresponding to 1 and 2: 

Fourier component (site) 1 2 

                     
                 

     

                      
                        

           

 

Here, each representation is defined by a complex order parameter, which has its own phase 1 and 2, and 

magnitude      and      for 1 and 2 respectively. Since the refined phase shift between the two magnetic 

moments from the same orbit (Table 6) differs from the qy = 83° value expected from the symmetry 

relations, we conclude that our magnetic model is a combination of both 1 and 2: 

Fourier component (site) 1 + 2 

              
        

        
        

       

               
        

        
        

            

 

Hence the important coupling term, which already takes into account observed orientations of     and Fe3+ 

magnetic moments as well as the symmetry operations of the little group, is written as 

                  
          

                

   

   (4.11)  

Here     is the magnetoelectric coupling tensor, , = x,y,  and          is the Fourier component of the 

magnetic moments for Fe atoms i = 1, 2 (Table 10). Based on the proposed magnetoelectric coupling term 
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and the above derived Fourier components taken for a combination of 1 and 2 we can derive magnetic 

structure factor                                (C is a constant) and consequently write the expressions for 

neutron magnetic peak intensity            ⋅      
      and electric polarization P: 

               
       

 
      

       
 
 

        
       

 
      

       
 
          

          
        

        
        

            

        
        

        
 

       
                       

(4.12)  

and: 
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(4.13)  

Considering now that M1x is real and M1y α iM1x the expressions simplify to: 

                   
     

              
     

           

                                  
(4.14)  

and: 

                   
     

                                        

                 
     

  

                                        

(4.15)  

In order to explain observed temperature dependences for both, P and I, we assume that in the vicinity of 

the phase transition magnetic order parameters,      and     , can be described with the simple power law 

ansatz (TN – T). At this point we stress that the phase difference between the two order parameters (1 – 2) 

defines the phases of individual amplitude modulation waves kl determined from neutron diffraction 

experiment (Table 6). The temperature dependence of I and P is simulated (Figure 51b) by assuming 

temperature dependent (1 – 2) approaching low-temperature values for kl obtained from the neutron 

diffraction experiments. The agreement with the experiment is much worse, if (1 – 2) are kept constant. 

The above analysis suggests that sliding of the individual amplitude modulation waves, which also removes 

the centre of inversion at the magnetic phase transition, is responsible for the magnetoelectric effect in 

FeTe2O5Br. Opposed to the P   I dependence reported for representative magnetically incommensurate 

systems (125), (126), (60), we find here the unusual proportionality between     and P (inset of Figure 51b). 

Similar dependence in the low-temperature incommensurate spiral phase of Ni3V2O8 (30) was explained with 

the saturation of the high-temperature magnetic order parameter already in the paraelectric phase. In 

contrast, the observed P        scaling in FeTe2O5Br is reproduced within our model as a direct consequence 

of the temperature dependence of the amplitude modulation wave phases. 
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If the exchange-striction model applies to FeTe2O5Br, then the above coupling term (equation 4.11) suggests 

that the spin phonon coupling is provoked by the difference in the individual phases of spin modulation 

waves. Additional experimental and theoretical investigations are necessary to validate this suggestion. 

4.5 Phase diagram – measurements performed in applied magnetic field 
The existence of the magnetoelectric coupling should manifest in a pronounced effect of the applied 

magnetic field on the ferroelectric properties of the system and vice versa the electric field on the magnetic 

properties. However, the small value of the electric polarization on one hand and sizable Fe3+ (S = 5/2) 

magnetic moments on the other, imply that magnetoelectric effects would be more easily induced by 

applying the magnetic field. We thus decided to measure specific heat, magnetic susceptibility, single-crystal 

neutron diffraction, NMR and dielectric measurements in the applied magnetic field. 

A detailed study reveal that there are actually two consequent magnetic transition 0.4 K apart (Figure 65), 

as already indicated by NQR. Both magnetic transition temperatures are highly dependent on the strength 

and the direction of the applied magnetic field. Hence the magnetic phase diagram consists of three phases 

paramagnetic high-temperature phase – above TN1, high-temperature phase, which is likely to be 

incommensurate (HT-ICM) – between TN1 and TN2, and low-temperature incommensurate (LT-ICM) phase, 

which is also ferroelectric – below the TN2. 

4.5.1 Specific heat measurements 

Specific heat measurements in the applied magnetic field were performed in the temperature range 

between 20 K and 2 K and 0 to 9 T on the standard Quantum Design PPMS setup with closed cycle cryostat at 

Paul Scherer Institute, Switzerland. 

A detailed inspection reveals that even in the absence of an external magnetic field, the anomaly at 10.6 K 

actually has a structure. This gets even more pronounced, when external magnetic field is applied along the 

a*-axis, as the anomaly clearly splits into two (Figure 52). With increasing magnetic field the high-

temperature transition at TN1 shifts to higher, while the low-temperature transition at TN2 shifts to lower 

temperatures. The effect of the magnetic field is significant – TN1 = 11.8(1) K and TN2 = 9.4(1) K in the 

magnetic field of 9 T. This way the borders in the phase diagram for      a* can be drawn (Figure 65).  

 

Figure 52: Temperature dependence of specific heat, cp, measured in different applied magnetic fields applied along a* axis. 
Please note that the zero-field anomaly at TN = 10.6(2) K splits into the high-temperature transition at TN1 shifting to higher and 
the low-temperature transition at TN2 shifting to lower temperatures with increasing magnetic field. 
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4.5.2 Magnetic susceptibility measurements in the applied magnetic field 

To obtain an overview of the magnetic behaviour in the applied magnetic field up to 5 T, we performed a set 

of magnetic susceptibility measurements along all three crystal axes, namely a*, b, and c. Again, 

measurements were performed in Quantum Design MPMS XL-5 SQUID magnetometer using He cooled 

cryostat. The results are shown in Figure 53. In the first column we show measured , in the second column 

we show the derivative of (T), d/dT, and in third column we show the field evolution of the anomalies 

determined from the first two columns. Temperature dependence of  for          measured in low magnetic 

field (0.01 T) exhibit an anomaly at 10.6 K, which is even clearer in d/dT plot (first row in Figure 53). When 

magnetic field is increased, this anomaly precisely mimics behaviour of the low-temperature peak in the 

specific heat measurements (Figure 52b), i.e., it shifts to lower temperatures and at 5 T it is found at 10.2(1) 

K. Hence we are confident that it reflects the TN2 magnetic transition. A precise observation of the d/dT plot 

reveals also a very minute change indicated by the dotted line in first plot in the second column of Figure 53, 

which seems to imitate the behaviour of the high-temperature peak in the specific heat measurements 

(Figure 52), corresponding to the TN1 transition. In case of       , the response is even more interesting 

(second row in Figure 53). Here both transitions are relatively well resolved, especially in d/dT plot. In this 

case, the transition temperature of the high-temperature transition, TN2, decreases with increasing field, 

while the TN1 appears to be field independent up to 3.75 T, where both anomalies seem to merge in to one 

sharp anomaly. From this point on, the increasing filed shifts the remaining anomaly (at TN) to the lower 

temperatures and at 5 T the TN is already at 10.40(5) K. The observed response of the , therefore suggests 

that magnetic field applied along the b-axis narrows the HT-ICM phase, which at 4 T finally disappears.  

 

Figure 53: Magnetic susceptibility measured along all crystal axes. Measurements for different orinetation of the applied magnetic 

filed      are shown in different rows (for       a* in first,       b in second and       c in last). First column of plots are stack plots of 

measured magnetic susceptibility , second column are stack plots of d/dT, shown for easier estimation of transition 
temperatures, and in the third column estimated transition temperatures are shown.  

When magnetic field is applied along the c-axis (last row in Figure 53), one anomaly is very clear, though now 

it shifts to higher temperatures with increasing magnetic field, i.e., from 10.50(5) K at 0.01 T it shifts to 
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10.73(5) K at 5 T. Again a precise investigation of the measured data unveils a second very weak anomaly  

at 11.0(2) K. This also seems to shift to higher temperature with increasing magnetic field, i.e., at 5 T it is 

observed already at 11.3(2) K. 

The magnetic susceptibility measurements obviously agree with the NQR results, which imply that HT-ICM 

phase is magnetic. However the NQR spectra in this phase are relatively noisy, leaving the question about 

the nature of the magnetic ordering - “Is it really incommensurate or not?” - still open. 

4.5.3 Nuclear magnetic resonance 

In order to get a deeper insight about the nature of the HT-ICM magnetic phase 79,81Br NMR measurements  

were carried out in magnetic fields of 9.4 T and 4.7 T applied along a* as well as along c. The NMR technique 

has been successfully employed in the past to reveal characteristics of incommensurate magnetic states 

(127), since NMR spectrum directly image local magnetic field distributions. On Figure 54 we show single 

crystal 79,81Br NMR spectrum measured in field of 9.4 T applied along a* at 80 K, i.e., well above the magnetic 

transition. For this orientation each four of the Br1/Br2 sites are magnetically equivalent, and hence only 

two resonant absorption lines are expected for the central transition (                ). However, even a 

small deviation from this orientation breaks the twofold screw axis and thereby the site equivalency in to 

two pairs, within each the equivalency is ensured by the centre of inversion. Consequently in our experiment 

a pair of lines for Br2 site is observed (Figure 54). Based on the intensity ratios, expected resonant frequency 

positions, and the quadrupolar moments of 79Br and 81Br nuclei, we can explain the NMR spectra in the 

following way. The two pairs of narrow lines, whose Larmor frequencies (L) are shifted from the 81Br NMR 

reference frequency (ref = 108.025 MHz, B = 9.4 T) for -3 MHz and 3.5 MHz, correspond to the central 

transitions (              ) of 79Br and 81Br, respectively. Each of these pairs is accompanied by two pairs 

of satellite lines (related to                and                  transitions), one approximately 10 MHz 

lower and the other 6 MHz higher in respect to the central line. The resonant frequency ratio between the 

lower and the higher satellite line pairs for 79Br and 81Br, almost precisely coincides with the ratio of their 

quadrupolar moments. We did not find the Br1 resonance, in spite of a broad span of our frequency sweep. 

This is most likely due to a large Q = 167.2 MHz and small  = 0.09, determined from the NQR 

measurements and the DFT calculations respectively, which at 9.4 T results in an extremely broad (125 

MHz) range of possible Br1 resonance; especially when compared to the Br2, which extents 10 MHz wide. 

In this respect our experimentally limited frequency span of “only” 40 MHz is rather small, i.e., one third of 

the whole Br1 range, and hence it is quite plausible that we have missed the Br1 signal. The line observed at 

24 MHz above the reference frequency most likely corresponds to the 125Te resonance (inset to Figure 54).  

 

Figure 54: Representative 
81

Br2 NMR spectra (L = 108.025 MHz, B = 9.4 T) measured for       a* at 80 K. 
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To check the reliability of the DFT calculations, we measured angular dependence of the (        –       ) 

transition of 81Br2 signal in the magnetic field applied in a*c plane (Figure 55). At  = 0°,     was parallel to a*. 

In order to compare the results with the calculated values we employed the procedure explained in the 

experimental section 3.1.2.3. If we assume that the isotropic hyperfine shift is (80 K) = 1.04 MHz and 

when we reduce the magnitude of the calculated EFG tensor (Table 7) for 12 %, as already determined from 

NQR results, we get almost perfect agreement between the experimental and calculated results (Figure 55). 

Moreover, considering the value for molar magnetic susceptibility at 80 K mol(80 K) = 0.217 Am2/(T mol), 

the obtained hyperfine shift (80 K) = 1.04 MHz, and 81 the magnitude of hyperfine fields at Br2 per Fe3+ 

(S = 5/2) magnetic moment can be estimated to 0.267 T/B. This result is close to the values obtained from 

the fitting of the NQR spectra (Table 9), and hence speaks in favour to the obtained set of parameters. Finally 

we note that very good agreement between the simulated and measured angular dependence implies that 

xz terms of the hyperfine coupling for Br2 site are almost insignificant as well as the induced dipolar fields, 

which would also complicate the angular dependence.  

 

Figure 55: Resonance position of 
81

Br2 NMR as a function of rotating angle . The empty circles correspond to the peak positions 
of the 

81
Br NMR central resonant line. The solid line is a simulation considering the 1.04 MHz isotropic hyperfine shift and the 

calculated EFG tensor reduced by 12 %. 

Hereafter we readjusted the crystal orientation to ensure         and focus only on the 81Br central transition. 

In the investigated frequency range we were able to detect also 79Br satellite transition (marked with an 

arrow on Figure 56a). Temperature dependence of 81Br central line and its satellite is shown on Figure 56a. 

Due to the weak signal the 79Br satellite line appears only below 240 K, at 1 MHz above the ref. The 

satellite line is significantly broader what imply that distribution of the EFG values along the crystal lattice is 

narrow, meaning that structural inhomogeneities in the investigated samples can be completely ignored. The 

resonant position of the central line closely mimics the magnetic susceptibility measurements (Figure 56b), 

i.e.,           . This can be understood in terms of the theory developed in section 3.1.2.1, equation 

3.21, as a signature of the temperature independent transferred hyperfine coupling constant. On cooling 

from 300 K it shifts from 3 MHz to 3.6 MHz at 50 K, where it meets a broad maximum and further starts to 

decrease to 3.5 MHz at 13 K. Comparison with the magnetic susceptibility behaviour therefore give us an 

estimated shift of 1.04(2) MHz at 80 K due to the transferred hyperfine coupling, indicating that hyperfine 

fields due to Fe3+ (S = 5/2) magnetic moments at Br2 site are 0.1 T. The satellite line shows a similar 

behaviour on cooling down to 50 K. In this range the satellite line shifts from 1 MHz at 240 K to 2.3 MHz at 50 

K, i.e., significantly more than the central line. This corroborate with the generally accepted assumption that 

the satellite transitions are more susceptible to the change of the EFG tensor and indirectly to the lattice 

expansion/contraction. Below 50 K, in contrast to the central line, the satellite line continuous to shift to 

higher frequencies and reaches 2.55 MHz at 13 K. This implies that the evolving short-range order (SRO) has 
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a different impact on                and                 (              ) transitions (Figure 56b), i.e., 

in case of central transition the resonance position is predominantly influenced by hyperfine field, while for 

satellite lines EFG tensor is the leading factor. Finally, the change of the intensity ratio between the central 

and the satellite line from 1.7 at 200 K to 1 at 13 K is most likely due to a different relaxation rates or 

different /2 pulses.  

a b  

Figure 56: (a) Temperature dependence of the 
79,81

Br2 NMR spectra (L = 108.025 MHz, B = 9.4 T) measured for       a*. (b) 
Resonance position of 

81
Br2 central (solid circles) and 

79
Br2 satellite (solid triangles) lines. A dashed line represents a rescaled 

temperature dependence of the magnetic susceptibility measured for       a*. Inset: estimation of the hyperfine fields, i.e., 
comparison of the 

81
Br2 central resonace position (empty circles – left scale) and magnetic susceptibility (solid line – right scale). 

Below TN1 = 12.0(5) K the spectrum abruptly change. Each resonance broadens dramatically and develops 

two well pronounced singularities split by about 1.7 MHz (Figure 57). The splitting implies large hyperfine 

fields along the a* at the 81Br sites, Bhf = 0.080 T. The observed line-shape is similar to that observed in NQR 

and can be simulated by assuming a sinusoidal dependence of the NMR shift along the magnetic wave 

vector:                      ⋅       , assuming incommensurate   . Here L is the Larmor frequency,  

includes chemical, quadrupole and Knight shifts and           ⋅        is the part of the shift due to the 

modulation of the local magnetic field arising from the nearby Fe3+ moments. The 81Br NMR line-shape 

(Figure 57) thus unambiguously proves that the intermediate magnetic structure of the HT-ICM phase is also 

incommensurate. On cooling through TN2 = 9.0(5) K the splitting between the two singularities dramatically 

increases (Figure 57), indicating a sudden increase in local hyperfine fields to 0.176 T. However, the 81Br line-

shape remains characteristic of an incommensurate magnetic structure and is thus in full agreement with 

the neutron diffraction data. 

 
Figure 57: Left: in the paramagnetic phase (T = 13 K) two well separated 

81
Br2 central and 

79
Br2 satellite lines are observed. In the 

HT-ICM phase each resonance suddenly broadens and the measured line-shape is characteristic of incommensurate magnetic 
structure. The solid line is a line-shape fit to the model described in the text. In the LT-ICM phase (T = 9 K) line-shape still 
corresponds to incommensurate magnetic structure, but the local hyperfine fields at the Br sites dramatically increase. Right: 
temperature dependence of the gaps between the singularities for central (empty circles) and satellite (empty triangles) lines. 
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In addition to measurements at 9.4 T, we measured 79,81Br spectra in the intermediate phase also at 4.7 T for 

     a* as well as for       . This field is appropriate since we can track all the transitions for 79Br and 81Br in a 

relatively narrow frequency range. Our aim was to learn as much as possible about the magnetic behaviour 

in vicinity of TN1 and TN2. Spectra measured between 20 K and 7 K are shown in Figure 58. We have followed 

the behaviour between 12 K and 8 K in very fine steps of 0.2 K in order to obtain enough points to draw a 

temperature dependence of the magnetic order parameter. Similarly to 9.4 T measurements the spectrum 

dramatically changes at TN1 = 11.4 K. Looking at the satellite line (marked with black arrow in Figure 58) one 

can clearly see how the line with decreasing temperature develops a U shape, characteristic for ICM 

magnetic structures. However in contrast to 9.4 T measurements, at TN2, the satellite line seems to 

disappear. Yet on further cooling, it seems that there is some very broad signal reoccurring. There are two 

possible explanations. First is associated with the occurrence of the electric polarization P at TN2, which 

originates from the electric charge redistribution. This is typically associated with small crystal lattice 

changes, which might strongly influence the EFG at the Br2 site. As already mentioned, the resonances of the 

satellite transitions depend very much on the EFG tensor and hence even a tiny change of the crystal lattice 

can either severely broaden the resonant line or even drastically change its position, what might explain the 

observed behaviour. However, NQR results imply that changes of the EFG below the ferroelectric transition 

are small; hence this effect is probably too small to explain the observed behaviour. Second explanation is 

associated with the relaxation times. Typically 1/T1 as well as 1/T2 diverges at TN. Hence in case of very short 

T2 just below the TN2, we might not be able to detect the NMR signal. In order to peruse this idea, we have 

measured temperature dependence of the lattice relaxation time T1 for both, satellite as well as central line 

(Figure 58d). T1 for both, satellite and central, lines behaves exactly the same through the whole 

temperature range. At room temperature, 1/T1 1.5 × 10-3 s-1 and is almost constant down to 100 K, where 

it starts to decrease and reaches minimum of 0.7 × 10-3 s-1 at 17 K. On further cooling 1/T1 exhibits two 

sharp anomalies. The first maximum is found at TN1 = 11.2 K, and the second one at TN1 = 10.2 K, exactly 

coinciding with the observed magnetic transition temperatures. Since the NQR results indicate that lattice 

relaxation in FeTe2O5Br is predominantly magnetic, i.e., 79T1/
81T1   (79 /81)

-2, we associate this behaviour 

with evolving magnetic correlations, which dramatically speed up relaxation process in the vicinity of phase 

transitions.  

 

Figure 58: (a) Temperature dependence of the 
79,81

Br NMR spectra (L = 54.013 MHz, B = 4.7 T) measured for       a*. (b) Distance 
between the two farthest singularities for the 

79,81
Br broad group of two pairs of central and two pairs of satellite lines (open red 

circles) and a single 
81

Br satellite line (solid squares). (c) 1/T1 measured at 
81

Br central (open red circles) and satellite (solid 

squares) line for        a*. (d) and (e) temperature dependence of 1/T1 measured at satellite and central line. 

Below TN1 we have measured T1 on the central position of the line as well as its edge; however there is 

almost no difference what so ever. To attain some estimation about the temperature evolution of the 
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magnetic order parameter, we plot in Figure 58b distance between the two farthest singularities for the 

satellite line (in black) as well as the group of the satellite and central lines between the red arrows (in red). 

For        (B = 4.7 T) the spectrum gets considerably more transparent, as the central lines of 81Br and 79Br lie 

far apart. Even more, also the splitting between the lines corresponding to the Br2 sites connected by the 

glide plane 21y, significantly increases. As a result, we can focus only on the two central lines corresponding 

to the 81Br (Figure 59). At this point we again stress that each of these lines originate from two Br2 sites, 

connected by the centre of inversion. Therefore, in an ideal case, when the inversion symmetry gets broken 

each of this lines should split in to two. So what happens? In the paramagnetic state in addition to the two 
81Br central lines at -8.5 MHz and -11.8 MHz a broad resonance is observed at -9.7 MHz. This line is most 

likely one of the satellite lines for 79Br or 81Br. At TN1 = 11.2 K the spectrum suddenly changes. Both central 

lines change their shape from narrow Gaussian line into a U-shaped line, typical for a distribution of local 

magnetic fields, found in ICM modulated magnetic structures. This implies that the direction of the applied 

external magnetic field does not change the nature of the HT-ICM phase, which remains ICM, as for        . 

The splitting between the two singularities is 1 MHz, implying that the projection of the hyperfine fields on 

the c-axis is Bhf (c) = 0.047 T, what is almost half the size as found for the fields along the a*.  Surprisingly, the 

broad line, found at -9.7 MHz relative to the reference frequency almost completely disappears, what is in 

contradiction with the behaviour of the satellite lines when      a*. There are at least two possible 

explanations for this disappearing: (i) the line we are looking at is not the satellite line, but it corresponds to 

Br1-site or 125Te resonance, both of which might exhibit completely different behaviour; or (ii) the relaxation 

times for this transition become so fast, that we are not able to detect the signal. Only 0.4 K lower, at TN2 = 

10.8 K, the second transition occurs. Spectrum again changes, though due to the weak signal (fast relaxation 

rates), it is very difficult to say much about detailed structure. For this reason we focus on the low-

temperature spectra, i.e., at 7 K, where the specific features of the spectra are more obvious. It is quite clear 

that the two lines differ. This might be the result of the anticipated breaking of inversion symmetry, as 

explained above. According to this scenario each line split in to two, which still overlap, though in slightly 

different manner, since they are not symmetry related any more. As a result two broad lines with different 

shapes would be observed, exactly as in our experiment. However, some contribution to this discrepancy 

might also come from the broad line, which disappeared in HT-ICM phase, but develops again and 

asymmetrically overlaps with the central lines. 

 

Figure 59: (a) Temperature dependence of the 
79,81

Br NMR spectra (L = 54.013 MHz, B = 4.7 T) measured for       c. (b) Distance 
between the two farthest singularities for the 

79,81
Br broad group of two pairs of central and two pairs of satellite lines (open red 

circles) and a single 
81

Br satellite line (solid squares). (c) 1/T1 measured at 
81

Br central (open red circles) and satellite (solid 

squares) line for        c. 
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To sum up, the NMR corroborates with NQR results and undisputedly confirms the incommensurability of 

the HT-ICM phase. However, we still have no indication about a detailed nature of the magnetic ordering – is 

it amplitude modulated as in LT-ICM or is it cycloidal, helical, etc. Nevertheless, it is likely that it is still 

inversion symmetric, which would mean that it is probably not ferroelectric. 

4.5.4 Neutron diffraction in the applied magnetic field 

In order reveal the nature of the magnetic ordering in the HT-ICM pahse and to get a better insight of what 

happens, when magnetic field is applied along b axis, we performed single crystal neutron diffraction for 

        and        in the applied magnetic field up to 6 T. Single-crystal diffraction experiments were performed 

on a 5 × 4 × 1 mm3 single crystal on the single-crystal diffractometer TriCS ( = 2.32 Å) at the Swiss Neutron 

Spallation Source, Paul Scherrer Institute, Switzerland, upgraded with the MA09 superconducting magnet 

(up to 6 T), when an external field was applied. 

In the absence of an external magnetic field (B = 0 T) the temperature dependences of the integrated 

intensity for three magnetic peaks, (0.5 0.463 -4), (0.5 0.537 -1), (1.5 0.537 -2), show the same behaviour 

(Figure 60, Figure 61a). They seem to mimic the evolution of the magnetic order parameter and they can be 

below 9.8 K nicely explained by the       |T – TN|2 law, where M denotes magnetization and obtained 

 is  0.26(1). A detailed inspection, however, reveals that a weak magnetic peaks can be observed already 

between 9.8 K and 10.2 K (Figure 60b) - before the establishment of the LT-ICM phase described by |T - TN|2 

dependence of the magnetic peak intensity. From the width of this temperature interval we assume it 

corresponds to the HT-ICM phase and consequently TN1 = 10.2 K and TN2 = 9.8 K. We stress that in HT-ICM 

phase the intensity of (0.5 0.537 -1) peak is smaller compared to the other two (Figure 60b), implying a 

change in the magnetic structure. The discrepancy of the transition temperatures compared to the other 

experiments is most likely due to modified experimental setup used for the neutron diffraction 

measurements in an applied magnetic field, i.e., the position of the thermometer was almost 15 cm further 

away from the sample compared to the normal zero-field setup. 

a b  

Figure 60: (a) Temperature dependences of normalized intensities of three magnetic reflections in B = 0 T and B = 6 T along a*. (b) 
The same dependeces magnified in the temperature interval of the HT-ICM phase. 

As expected, in the magnetic field of 6 T applied along a*, the temperature interval of the HT-ICM phase 

broadens and becomes very distinct (Figure 60b, Figure 61a). We stress that all magnetic peak intensities in 

the HT-ICM phase have fundamentally different temperature dependence compared to LT-ICM phase. The 

difference is evident from the critical exponent  in the expression I ≈ |T – TN|2, which is in LT-ICM phase  
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0.26(1), whereas it is almost 0.35(2) in HT-ICM, i.e., magnetic peak intensity in the HT-ICM phase seems to be 

almost proportional to the temperature. The comparison of the obtained  to the critical exponent values 

known for some typical universality classes (Table 11) implies that the HT-ICM phase should be characterized 

as three-dimensional planar (3D XY) model, while LT-ICM corresponds to the two-dimensional planar (2D XY) 

class. These findings are in agreement with planar nature of the refined LT-ICM magnetic structure as well as 

layered crystal structure, whereas the proposed 3D character for HT-ICM phase is counterintuitive. 

Table 11: Critical exponent  for some chosen universality classes. 

Universality class  reference 

2D Ising 1/8 (80) 

2D XY 0.23 (128) 

3D Ising 0.32 (129) 

3D XY 0.35 (129) 

3D Heisenberg 0.36 (129) 

 

Moreover, if hypothetically the change of dimensionality would occur, one would expect this to happen in 

exactly the opposite sequence. Hence, we suspect that the obtained  might deviate from the correct value 

for the critical exponent. This is because the magnetic peak intensity I is not exactly proportional to the M2 

but it depends also on the phase shifts between the amplitude modulated waves, which have also their own 

temperature dependences, braking the simple I ≈ |T – TN|2 relation. 

a b  

Figure 61: Temperature dependence of (a) normalized intensity of (0.5 0.463 -4) magnetic reflection in different magnetic fields 
applied along a* and b axes, and (b) temperatiure evolution of the of (0.5 0.463 -4) magnetic peak position in magnetic fields 
applied alnog a*. 

Similar to the magnetic peak intensity, behaviour of the magnetic peak positions can be also explained with 

|T – TN|2 law, where   0.26(1) (Figure 61b). For instance, position of the (0.5 0.463 -4) magnetic peak 

shifts with decreasing temperature to lower k values for approximately 0.004 r. l. u. The obvious 

resemblance between the behaviour of the peak position and its intensity implies that magnetic wave vector 

does actually depend on the amplitude of the Fe3+ (S = 5/2) magnetic moments, which might indicate that it 

is also involved in the magnetoelectric coupling mechanism. However, such behaviour is missing in the HT-

ICM phase. Thought it is difficult to say much about the temperature dependence of the peak position in the 

HT-ICM phase at B = 0, it is revealed when magnetic field is applied (Figure 61b). In contrast to the LT-ICM 
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phase, in HT-ICM phase magnetic peak positions are temperature independent and seem to be locked at 

0.4666(3) position.  

The effect of the field applied along b axis is even more interesting, as expected from susceptibility 

measurements. Temperature dependences of the magnetic peak intensities for this case (Figure 61a) 

confirm implications of the magnetic susceptibility measurements that the temperature interval of HT-ICM 

phase shrinks with an applied magnetic field. Actually, at 5 T there is no sign of the temperature interval with 

linear (large ) evolution of the magnetic peak intensity, implying that the HT-ICM phase completely 

disappears. 

In order to investigate the short-range ordering effects, we have performed h, k, and l-scans of some strong 

magnetic reflections above the TN1. This way we can estimate the correlation lengths along all three crystal 

axes, since magnetic correlation lengths in a*, b and c axes are proportional to the widths of the magnetic 

reflection measured in scans along h, k and l respectively, i.e., the magnetic correlation length along a* axis, 

a*, can be calculated from the width of the magnetic peak, fwhm, determined from the h-scan measurement 

as a*= 1/[ (fwhm[r.l.u.]/a*)]. Since FeTe2O5Br is a layered system, with shortest interlayer Fe-Fe distances 

around 10 Å, the obvious question is how far above the TN1 the neighbouring layers feel each other. On 

Figure 62a we show a temperature dependence of the (3.5 0.463 0) magnetic peak intensity and width, 

when performing h-scans. 

a  b  c  

Figure 62: Correlation length measurements. (a) above: temperature dependence of the magnetic peak intensity clearly indicates 
two consecutive magnetic transitions, below: estimated magnetic correlation length along a* determined from the width of 
magnetic peak obtained from h-scans. (b) above: temperature dependences of magnetic peak intensity of (0.5 1.537 0) magnetic 
peak and bottom: estimated magnetic correlation length along b axis, determined from k-scans. (c) Comparison of the magnetic 
peak (0.5 1.537 0) measured in k- and l-scans at 0 T and 5 T. 

Obviously the correlation length starts to decrease already in the HT-ICM phase and at TN1 the  along a* is 

just around 30 Å. Above the transition,  is further reduced and it drops below the interlayer Fe-Fe distance 

already at 11.6 K, i.e., 0.5 K above TN1. We note that deviation of the TN1 compared to the previous 

measurements is strictly due to the used experimental setup. This implies that short-range ordering 

correlations between the neighbouring layers break up very soon, and the remaining short-range ordering 

effects observed by the other techniques should come from the intralayer correlations. To check this we 

have measured a k-scan temperature dependence of the (0.5 1.537 0) magnetic peak (Figure 62b). Just 

above the TN1 the estimated correlation length is 20 Å. Comparing this to 4.76 Å, which is the minimal Fe-Fe 

inter-tetramer distance, we can assume that there are still strong correlations within the layers. In spite of 
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rather quick reduction of the correlation length, we are able to sense the magnetic peaks up to 40 K in 

agreement with the ESR and magnetic susceptibility measurements. To get an estimate of the correlations 

along the c axis, l-scan of the (0.5 1.537 0) magnetic peak at 11 K was performed (Figure 62c). The 

comparison of the calculated correlation length 13 Å and 21 Å, measured along c and a* respectively, 

most likely reflects the anisotropy in the intercluster superexchange. When magnetic field is applied (Figure 

62c) nothing happens suggesting that magnetic field up to 5 T does not influence magnetic correlations. 

Considering the strong magnetic interactions (J’s are estimated to be around 10 K) and very high saturation 

fields (up to 5 T, the magnetization curve does not show any sign of saturation) this is actually the expected 

result. 

4.5.5 Thermal expansion in the applied magnetic field 

To investigate also the effect of the applied magnetic field on the crystal lattice, we measured thermal 

expansion parameter along the c-axis, c, with magnetic field applied also along the c-axis. The data were 

taken in warming up employing a low sweep rate of 1.5K/h.  

In the applied magnetic field of 6 T, the peak position observed at 10.5 K shifts to higher temperatures in 

agreement corroborating with the magnetic susceptibility as well as NMR. A detailed inspection of both 

measurements B = 0 T and 6 T reveals that in both temperature dependence runs there is a small anomaly 

approximately 0.4 K above the sharp peak, which might correspond to the magnetic transition from 

paramagnetic to HT-ICM phase. Hence we suggest that the sharp peak indicates the HT-ICM to LT-ICM 

transition and is associated with the onset of the electric polarization, which induces the detected lattice 

distortions. To clarify this point, dielectric response of the sample as well as information on the pressure 

dependence of the antiferromagnetic transition would be very helpful. 

 

Figure 63: Thermal expansion parameter along the c-axis, c, measured in zero-field and in the applied magnetic field of 6 T. 

4.5.6 Dielectric measurements in the applied magnetic field 

To firmly prove the existence of the magnetoelectric coupling as well as to reveal what happens with the 

electric polarization in the HT-ICM phase and when magnetic field is applied along b axis, we performed an 

extensive investigation of the dielectric properties in the external magnetic field. In Figure 64 we show the 

complete dielectric response along c axis in magnetic fields up to 5 T. The ac dielectric measurements in the 

dc magnetic bias field were performed in the magnetic field of Quantum Design MPMS XL-5 SQUID 

magnetometer. 

For magnetic field applied along a* and c axes, the peak in the dielectric constant exactly mimics the 

behaviour of the TN2 determined from the magnetic susceptibility, NMR, neutron diffraction and thermal 
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expansion measurements. i.e., for         it shifts to the lower temperatures, while for the        it shifts to the 

higher temperatures; thus indicating that electric polarization is present only in the LT-ICM phase. In 

addition, this corroborates also with the NMR results for       , suggesting that HT-ICM phase might still be 

inversion symmetric and thus incapable of inducing macroscopic electric polarization. We also notice that 

the magnitude of ´(B,TN2) at the transition temperature is weakly dependent on applied magnetic field. In 

Figure 64b we plot the magnetic field dependence of the height of the peak ´max(      
 ) / ´max(B = 0) 

demonstrating a weak but nonzero quadratic magnetoelectric coupling.  

On contrary, when magnetic field is applied along the b axis, the dielectric response is unexpected. Similar to 

        and        case, the dielectric peak follows the TN2, but on top of that its intensity slowly decreases and 

eventually at 4 T finally vanishes. The extinction of the singularity exactly coincides with the overlap of the 

anomalies observed in the d/dT as well as with the disappearance of the HT-ICM phase observed in the 

neutron diffraction experiment. This suggests that the existence of the HT-ICM phase is essential for the 

electric polarization in the LT-ICM phase. The disappearance of the electric polarization at 4 T for        

implies that magnetic structure should also change. However, no noticeable anomaly was observed at this 

field in the magnetization curve as well as no significant change in the magnetic peak position and intensity 

was found. Obviously the changes responsible for the phenomenon are very small and difficult to observe. 

Hence a detailed investigation in higher magnetic field is needed to resolve this question.  

a  b  

Figure 64: (a) Temperature dependence of the dielectric constant measured along c-axis in magnetic fields applied along all three 
crystall  axes. First column show steck plots of as measured capacitance, C, of the sample, which mimics the behaviour of 
dielectric constant, while the second column show the estimated ferroelectric transition temperatures. (b) The normalzed 
integrated intensity of dielectric constant as a function of applied magnetic field along the a* direction. 

4.5.7 Phase diagram – summary 

Based on the presented measurements in the applied magnetic field we can plot the B-T phase diagram of 

the FeTe2O5Br system (Figure 65). When magnetic field is applied along a*-axis the upper transition 

temperature, TN1, shifts up and the lower one, TN2, shifts down, i.e., the gap between the two temperatures 

increases from 0.4 K in the absence of the magnetic field to 2.4 K at 9 T. Field dependent dielectric 

measurements show that ferroelectric transition temperature mimics the dependence of the low-

temperature magnetic transition, suggesting that the electric polarization develops only in LT-ICM magnetic 

phase (Figure 65a). For         both transition temperatures moderately shift (for 0.2 K) to higher 

temperatures with increasing field, keeping the width of the HT-ICM temperature interval almost field 

independent. Magnetic field applied along b-axis has even smaller impact on the transition temperatures – it 
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only slightly lowers TN1 (for 0.1 K), whileTN2 does not change at all. However, at 4 T transition 

temperatures coincide and HT-ICM magnetic phase seems to disappear (Figure 65b). Moreover, at the same 

time electric polarization vanishes, which implies that also LT-ICM phase has changed (Figure 65b) into LT-

ICM 2. This phase seems to be very similar to the low-field LT-ICM phase, as there is no noticeable anomaly 

in the magnetization curve as well as no significant change in the magnetic peak position and intensity. 

At last we stress that above TN1 exists a broad region (up to 6 TN) where short-range ordering within the 

crystal layers is present, which we ascribe to low-dimensional nature of the system as well as geometrical 

frustration effects. However, the applied magnetic field does not seem to effect on it. 

 

Figure 65: Complete temperature versus magnetic field phase diagram based on all performed measurements:  specific heat (red 
squares), dielectric constant (black squers), magnetic susceptibility (blue triangles), neutron diffraction (cyan circles) and 

81
Br NMR 

(green squers) measurements. Abbreviations PM and FE stand for paramagnetic and non-ferroelectric phase, respectively. High-
temperature magnetically incommensurate phase (HT-ICM) for TN2 < T < TN1 does not show a spontaneous polarization, while the 
low-temperature magnetically incommensurate phase (LT-ICM) for T < TN2 coexists with the ferroelectric phase (FE) with 
polarisation aligned along c-axis. The LT-ICM phase is characterised by nearly transverse incommensurate magnetic order with 
magnetic wave vector      = (1/2, 0.4629, 0). 

4.6 Low-energy excitations 
Here we present our investigation of the low-energy excitation spectra of the FeTe2O5Br. 

4.6.1 Inelastic neutron scattering 

Inelastic neutron spectroscopy was performed on the TASP spectrometer at the Swiss Neutron Spallation 

Source, Paul Scherrer Institute, Switzerland using the arrangement of three FeTe2O5Br single crystals 

coaligned within 1 °, each with a size of approximately 10 × 8 × 2 mm3, and the total mass of 1.2 g. 

Investigation of spin excitations has been performed in the hk0 plane starting from the two magnetic peaks          

-2.5 -0.5± 0, where  is 0.036 r.l.u. First we performed broad energy scans up to 7.5 meV, with the 

resolution of 0.6-0.8 meV for k selected between -1.5 and -0.45 and constant h = -2.5. The results (presented 

in Figure 66a) show that there are at least three excitation branches present. The low-energy branch 

(indicated by a black line and symbols in Figure 66a) rises from 1 meV at k = -0.5 (-1.5) up to 3.5 meV at k 
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= -1, where it overlaps with the higher energy excitations. In contrast the higher two branches at 3.5 meV 

and 5 meV (indicated by a red and green lines and symbols in Figure 66a) seem more or less k independent 

(dispersionless). At this point we stress that due to the experimental limitations the energy resolution was 

significantly better for scans above the magnetic peaks, i.e., -1.5 < k < -1 and -0.5 < k < 0, which is obvious 

from Figure 66a. In other words, our resolution ellipsoid was elongated along (k, E). 

a  b  c  

Figure 66: Energy map of the magnetic excitation spectra for varying k obtained from inelastic neutron diffraction experiment. (a) 
low-resolution map of the complete energy scale along k for h = -2.5 and l = 0 and (b) high-resolution map up to 3 meV recorded in 

the vicinity of the magnetic peaks (-2.5  -0.5±±k  0), (k < 0.15 r.l.u.). (c) Energy scans for h = 2.5, 2.7 and 3.0 for fixed k = -0.5+ 
and l = 0. 

A detailed inspection of the region between k = -0.65 and k = -0.3 and energy (E) of E = 0.2 meV and E = 3.2 

meV was performed with the higher energy resolution setup (dE =0.2 meV). The results are shown on Figure 

66b. Again the effect of the resolution ellipsoid is apparent below k = -0.5. Nevertheless, inspection of the 

measured spectra reveals that the low-energy branch is actually composed of at least 5 branches. The 

strongest two, marked with white and orange on Figure 66b show a very similar behaviour and each of them 

seems to disperse from one of the two neighbouring incommensurate magnetic peaks. On the other hand, 

behaviour of the rest of the branches is more difficult to resolve, as they lack in intensity. It seems that the 

red mode closely follows the behaviour of the white and the orange, whereas the violet and the black seem 

to deviate, i.e., they appear to be less dispersing. Interestingly the most intense modes (white and orange) 

are gapped at 1 meV, while the Goldstone red and black modes are much weaker. This is very similar to the 

behaviour of the Cu2Te2O5X2 system (130). The dependence of the excitation spectra along h direction is 

shown on Figure 66c. As expected the excitations are here only weakly dispersing. The only change between 

the energy scans performed at -2.5 -0.46 0 and -3.0 -0.46 0 was that at higher h excitation modes have 

slightly broadened and weakened, indicating that indeed the energy level distribution along h is undisturbed. 

a  b  

Figure 67: (a) Temperature dependence of the excitation spectra at (-2.5 -0.536 0) magnetic peak position. (b) Temperature 
dependence of the scattered intensities measured at (-2.5 -0.536 0) for elastic (E = 0 meV) and inelastic scattering (E = 1 meV). 



99 

Finally we measured also the temperature dependence of the excitations at the magnetic peak position (-2.5 

-0.536 0) (Figure 67a). The results suggests that excitations at 1 meV survive far above the magnetic 

transition (TN1 = 10.6 K). The emergence of a strong diffuse scattering at the magnetic peak position above 

the transition temperature implies the closing of the energy gap. To investigate this assumption, a detailed 

inspection of the temperature dependence of the intensities (Figure 67b) was performed. Apparently the “1 

meV” excitation does not weaken at the magnetic transition and it stays almost constant in intensity (but 

damped) up to 20 K and vanish only after 30 K. This suggests that the spin excitations gapped at 1 meV, do 

not vanish at the magnetic transition and persist, damped and spatially on a short-range scale, up to 3TN, in 

agreement with the elastic neutron diffraction as well as other experimental techniques. 

4.7 Summary and conclusion 
In summary, we have discovered simultaneous emergence of ferroelectric and magnetic order in FeTe2O5Br 

in the state with nearly transverse amplitude modulated incommensurate magnetic structure described by 

the wave vector    = (1/2 0.463 0). The ferroelectricity is ascribed to the polarization of Te4+ lone-pair 

electrons. The magnetoelectric effect and the unusual temperature dependence of the magnetic and 

ferroelectric properties are explained with the sliding of neighbouring amplitude modulation waves opening 

the possibility for the exchange-striction in the Fe-O-Te-O-Fe intercluster superexchange bridges. 

Further we present a detailed B-T phase diagram which is determined by three phases, paramagnetic, 

incommensurate HT-ICM phase, and incommensurate amplitude modulated LT-ICM phase, where also 

electric polarization is present. Both magnetic transition temperatures show pronounced field dependence, 

as they shift up and down depending on the field orientation. The most interesting observation is that when 

the magnetic field is applied along the b-axis, above 4 T HT-ICM phase disappears along with the electric 

polarization in the LT-ICM phase. This phenomenon remains unresolved and is yet to be investigated. We not 

that already far above (6TN) the first magnetic transition short-range correlations are present, which are 

ascribed to the low-dimensional nature of the crystal and geometric frustration effects. 

Finally we show the magnetic excitation spectra, which indicates that Goldstone modes are strongly 

suppressed, and that most intense excitations are gapped one. Moreover, these excitations does not vanish 

at the magnetic transition, as they persist, damped and spatially on a short-range scale, up to 3TN. 

To conclude, our results suggest that two-dimensional systems of magnetic clusters with triangular geometry 

are a fruitful family of interesting physical phenomena, one of them being also a novel magnetoelectric 

coupling mechanism, based on the sliding of the neighbouring amplitude modulated magnetic waves. 

Our results suggest to look for new magnetoelectrics in the vast family of M-T-O-X compounds (M = Cu, Ni, 

Fe, X = Cl, Br, I, T = Te, Se, Sb, Bi, Pb), as they frequently join strong magnetic frustration with the presence of 

T ions with lone-pair electrons. 
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5 Ni5(TeO3)4Br2 

Intrigued by the discovery of the magnetoelectric coupling in the FeTe2O5Br system, we expand our study of 

low-dimensional magnetic systems with frustrated geometries to the Ni5(TeO3)4Br2 system. This system is a 

result of the same synthesis concept, as used in the case of FeTe2O5Br (16), (15), which is based on the fact 

that stereochemically active lone pair electrons in association with halide ions open up the structure and 

increase the possibility for low-dimensional arrangement of the transition metal cations. As already 

mentioned in the introduction, this way several new compounds have been found, e.g., Cu2Te2O5X2 (X = Cl, 

Br) (17), CuSb2O3Br (18), and Cu4Te5O12Cl4 (19), as well as Ni5(TeO3)4X2 (X = Br,Cl, I) (15). The new Ni5(TeO3)4X2 

(X = Br,Cl, I) family was found to have triangular arrangement of Ni2+ (S = 1) magnetic moments within the 

[Ni5O17X2] subunits and a layered topology of the Ni2+ sites, typical for frustrated antiferromagnet. In spite of 

this, the Ni2+ (S = 1) magnetic moments below TN (29 K for X = Br) develop long-range antiferromagnetic 

order, which is expected to be rather complex due to the frustrated arrangement of the Ni2+ ions. 

In this section we present our investigation of the magnetic ground state of Ni5(TeO3)4Br2 single crystal and 

its behaviour under the applied magnetic field down to 1.5 K and up to 23 T (131), (132), (133), (134). 

Extensive study included magnetization, magnetic torque, neutron diffraction, specific heat, and 

antiferromagnetic resonance measurements. A nonzero magnetic contribution to the heat capacity observed 

up to 2.3TN is consistent with short-range magnetic ordering and the two-dimensional nature of the system. 

Below the TN several antiferromagnetic phases were identified. The zero-field phase is characterized by a 

planar antiferromagnetic arrangement of the two in-layer neighbouring [Ni5O17Br2] magnetic clusters within 

the magnetic unit cell. When the magnetic field is applied along the a* crystal axis, a spin-flop-like transition 

to a phase with a complex out-of-plane arrangement of Ni2+ (S = 1) magnetic moments occurs at 10 T. Using 

a molecular-field approach we were able to explain the magnetic field dependence of the antiferromagnetic 

resonance as well as predict the shift of the spin-flop like transition to higher fields with increasing 

temperature and the occurrence of a new magnetic phase with ferromagnetic ordering of [Ni5O17Br2] 

magnetic clusters above 24 T. We ascribe the richness of the magnetic phases to strongly exchange-coupled 

clusters, being the basic building blocks of the investigated layered system. Estimated single-ion anisotropy, 

associated with the strongly distorted Ni-cantered octahedra, has the same magnitude as the 

antiferromagnetic superexchange interaction, which obviously prevails over the geometrical frustration and 

leads to a long-range magnetic ordering below TN. We note that in contrast to FeTe2O5Br, zero-field magnetic 

ground state of Ni5(TeO3)4Br2 preserves the inversion symmetry of the crystal lattice and thus rules out a 

possible ferroelectric behaviour. Nevertheless, the inversion symmetry is broken in the predicted high-field 

magnetic phase, hence electric polarization is in principle allowed. 

5.1 Crystal structure 
The Ni5(TeO3)4Br2 crystallizes in the monoclinic system (Table 12) (15). There are three different 

crystallographic nickel sites. Ni1 (Wyckoff site 4e) and Ni3 (in 8f) are octahedrally coordinated by oxygen 

atoms while Ni2 (in 8f) is connected to five oxygen atoms and one halogen atom. The three Ni-sites are 

connected via oxygen bridges to form some kind of a “claw” *Ni5O17Br2] basic unit made of two connected 

triangles with Ni1 in the centre. The distances between Ni1-N2 and Ni1-Ni3 are 2.98 Å and 3.29 Å 

respectively, while the Ni2-Ni3 distances (2.8204(5) Å) are very short. This results in the Ni2-O-Ni3 bond 

angle below 90°, which according to the Goodenough-Kanamori rules (section 2.2.2.2) favours ferromagnetic 

superexchange interaction. In contrast, angles between the rest of the Ni-sites are in average larger than 

90°, which likely result in the antiferromagnetic superexchange. As observed in Figure 68, one claw 

[Ni5O17X2] is linked via eight corners to four of its next-nearest neighbours. This forms, due to the 2-fold axis 

and the glide plane c, rows, running alternatively along y, which build the NiO layers (Figure 68). Between 
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the Ni layers, [TeO3E] tetrahedrons are located (E denotes the 5S2 lone pair electrons of the Te4+ ions). Each 

tetrahedron shares three oxygen atoms with four adjacent basic entities [Ni5O17Br2], while in the space 

available between the Ni layers its lone pair E interacts with the halogen ions, i.e., this compound provides a 

new example in which lone pair-lone pair and lone pair-halogen interactions are observed. 

Table 12: Basic crystallographic parameters for Ni5(TeO3)4Br2 system determined at 153 K (15). 

Space group:   C2/c, (monoclicnic) 

Lattice parameters a = 19.5674(2) Å b = 5.2457(1) Å c = 16.3084(9) Å  = 125.289(1)° 

Atomic coordinates: Atom x/a y/b z/c 

 

Te1 0.6216(1) 0.1846(1) 0.1358(1) 

Te2 0.3569(1) 0.7833(1) 0.1201(1) 

Br 0.2628(1) 0.1969(1) -0.0983(1) 

Ni1 0.5 0.2531(1) 0.25 

Ni2 0.4136(1) 0.2834(1) 0.285(1) 

Ni3 0.5102(1) 0.7183(1) 0.1224(1) 

O1 0.4370(2) 0.0027(5) 0.1307(2) 

O2 0.6122(2) 0.8358(5) 0.2507(2) 

O3 0.4303(2) 0.1198(5) -0.0700(2) 

O4 0.4252(2) 0.5055(5) 0.1458(2) 

O5 0.5394(2) 0.3333(5) 0.1432(2) 

O6 0.4087(2) 0.6447(5) -0.0177(2) 

 

To summarize, the triangular based Ni2+ topology of the Ni5(TeO3)4Br2 has all characteristics of frustrated 

systems, whereas on the other hand, all Ni2+ sites have strongly distorted octahedral environments and thus 

a significant magnetic anisotropy, which might prevail over the geometrical frustration and lead to a long-

range magnetic ordering. We note that the crystal structure has a centre of inversion, thus, excluding a 

possibility for intrinsic ferroelectric behaviour. Nevertheless, this might change in case of the magnetic 

ground state with broken inversion symmetry. 

 

Figure 68: (a) The bc Ni5(TeO3)4Br2 layer with the notation of the superexchange interactions used in this work. Numbers from 1 to 
10 indicate the numbering of magnetic sublattices used in our model. Te atoms are omitted for clarity. (b) The three Ni-sites are 
connected via oxygen bridges to form some kind of a “claw” *Ni5O17Br2] basic unit made of two connected triangles with Ni1 in the 
centre. (c) Projection of the crystal structure on the ac plane. Small yellow circles represent Ni, larger blue circles stand for oxygen, 
gray circles for Te, and violate ones indicate Br.  
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5.2 Magnetic properties in zero and low magnetic field 
A high-temperature Curie-Weiss dependence of the magnetic susceptibility with the Curie-Weiss 

temperature of aboutCW = −46 K (15) suggested strong antiferromagnetic interactions between Ni2+ 

(electronic configuration 3d8) S = 1 spins. The preliminary magnetic susceptibility data (15) also found a small 

anomaly at low temperatures indicating a magnetic transition at around TN = 28 K for Ni5(TeO3)4Br2 system 

(TN = 23 K and TN = 30 K for isostructural Cl and I systems, respectively). The observed hysteresis effects were 

assigned to the interplay of the random grain orientation of the powder samples with magnetic anisotropies 

of the spin system. 

In order to answer the question how does geometrical frustration on the one hand and magnetic 

anisotropies on the other, influence the magnetic ground state and how this behaves under applied 

magnetic field, Ni5(TeO3)4Br2 single crystals were investigated by magnetization, neutron diffraction, 

antiferromagnetic resonance, heat-capacity, and magnetic-torque measurements (134), (135), (131), (133).  

5.2.1 Magnetization measurements in low magnetic fields 

Temperature dependence of the dc magnetic susceptibility measured in a field of 0.1 T is for different crystal 

orientations shown in Figure 69a. In a preliminary report Zorko et al. (135) found out that at high 

temperatures magnetic susceptibility  follows the Curie-Weiss law with the Curie-Weiss temperature of 

aboutCW  −50 K and the Curie constant C = 5NAeff
2/3kB  77 Am2K/mol T (mol of formula unit). They 

obtained the effective magnetic moment eff = 3.5 B, which for S = 1 spin system indicates a g-factor g  2.5 

in reasonable agreement with the value g = 2.35 obtained by Johnsson et al. (15). The sign and the 

magnitude of the Curie-Weiss temperature suggest fairly strong predominantly antiferromagnetic 

interactions between Ni2+ moments. There is a small magnetic anisotropy present already at high 

temperatures, which was attributed to the anisotropy in the g factor. Our analysis of 1/ (Figure 69b) 

confirmed the above results, givingCW = −44(5) K, C = 75(2) Am2K/mol T, (eff = 3.45(5) B). 

a b  c  

Figure 69: (a) The temperature dependence of dc magnetic susceptibility measured for different crystal orientations. In the inset, 
we show the expanded low-temperature region. (b) The temperature dependence of the inverse susceptibility for different crystal 
orientations. Solid lines present the high-temperature fit to the Curie-Weiss law. (c) The angular dependence of the magnetization 
measured at T=2 K for crystal rotations in the a*c, a*b, and bc planes. Solid lines are fits to the model described in the text. 

A closer inspection of the low-temperature susceptibility data (inset of Figure 69a) reveals a small bump at 

TN = 29(1) K, reported already in the original article, where it was ascribed to the antiferromagnetic 

transition. Below TN, a large anisotropy in the magnetic response was found. The magnetic moments, which 

are in low-fields orientated along the easy axis, bend easier along the field applied in the direction of the 

intermediate axis than along the field applied in the orientation of the hard axis. On the other hand, up to 

the spin-flop field they are almost unsensitive to the changes of the magnetic field along the easy axis. 

Therefore, since the largest magnetization is measured along the b axis, we assign this axis as the crystalline 

effective intermediate axis, which also means that the crystalline a*c plane is the plane of the easy and the 
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hard axes. Comparing the measurements taken with         and       , we notice that the decrease of the 

magnetic susceptibility is larger for        . Hence we conclude that this crystal axis is close to an effective 

crystalline easy axis, which leaves us with c as the effective hard axis. The complete temperature 

dependence of the magnetic susceptibility, however, signals even more complex picture of the magnetism in 

Ni5(TeO3)4Br2 single crystal. For instance, we notice a bump in the magnetic susceptibility at around T = 12 K, 

which could, for instance, originate from the different temperature dependence of the Ni sublattice 

magnetizations. 

To determine the precise orientation of the magnetization easy and hard axes, we decided to measure the 

angular dependence of the magnetization (Figure 69c) at T = 2 K and B = 0.1 T. The magnetization is the 

largest for        confirming once again this axis as the intermediate axis (see above discussion for the 

argumentation). In the crystalline a*c plane, the easy axis is tilted 30° from the crystal a* axis, while the 

hard axis is then 30° from the c axis. 

5.2.2 Neutron diffraction in zero-field 

We now turn to the determination of the magnetic structure by neutron diffraction. A refinement of the 

crystal structure for Ni5(TeO3)4Br2 single crystal confirmed the structural model published in (15). Below TN, 

new reflections of magnetic origin appeared at the positions of the C-centered lattice corresponding to the 

wave vector    =(0, 0, 0) (Table 13). The two strongest magnetic peaks (−201) and (−203) break the extinction 

rule h0l: h, l=2n, while the hk0: h+k=2n rule is preserved. 

Table 13: Selected observed and calculated squared magnetic structure factors F
2

obs and F
2

calc of Ni5(TeO3)4Br2 single crystal at 5 K 
corresponding to the model discussed in the text. The data set of 90 reflections with hmax = 12, k = 0, and lmax = 13 was used to 
refine the magnetic structure. The experimental setup limited our measurments to h0l peaks only. 

h k l F2
obs F2

calc h k l F2
obs F2

calc 

0 0 1 0.09 0.15 2 0 5 3.27 2.89 

0 0 3 14.51 12.95 2 0 7 1.68 0.24 

0 0 5 2.82 3.79 2 0 9 2.36 0.04 

0 0 7 3.07 0.64 2 0 11 2.25 0.79 

0 0 9 0.73 0.01 2 0 13 2.90 0.21 

0 0 11 0.84 2.19 4 0 1 0.35 0.06 

0 0 13 0.94 0.28 4 0 3 4.39 3.04 

0 0 15 0.99 0.01 4 0 5 2.13 0.36 

2 0 −1 30.43 29.49 4 0 7 0.86 0.43 

2 0 −3 65.56 71.14 4 0 9 1.09 0.05 

2 0 −5 0.96 1.86 4 0 11 1.00 0.26 

−2 0 7 4.10 0.52 4 0 −1 12.00 11.77 

2 0 −9 1.54 0.00 4 0 −3 60.73 59.33 

2 0 −11 3.93 3.04 4 0 −5 11.51 7.26 

2 0 −13 0.90 0.78 4 0 −7 1.23 1.86 

2 0 1 1.51 0.01 4 0 −9 3.08 2.37 

2 0 3 2.36 3.10 4 0 −11 1.23 2.07 

     4 0 −13 1.51 1.98 
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Table 14: Irreducible representation 4 of the wave vector group for      =(0, 0, 0) in the space group C2/c. The coefficients 
corresponding to the Wyckoff sites 4e are x = 0.5, y = 0.2575, z = 0.25 for Ni1 and those of 8f are x = 0.4089, y = 0.2842, z = 0.0265 
for Ni2 and x = 0.5095, y = 0.7191, z = 0.1213 for Ni3.  

4e 8f 

x y z u 0 v x y z u v w 

−x+1/2 −y+1/2 −z+1/2 −u 0 −v −x+1 y −z+1/2 u −v w 

 
−x+1/2 −y+1/2 −z+1/2 −u −v −w 

x −y+1 z+1/2 −u v −w 

 

To facilitate magnetic structure determination, representation analysis was performed with the program 

BASIREPS (136). The Fourier coefficients describing possible spin configurations can be written as linear 

combinations of irreducible representations of the wave vector group. The group of    =(0, 0, 0) does not split 

the 4e and 8f Wyckoff sites occupied by Ni2+ ions. The magnetic representations for the 4e and 8f sites are 

(4e) = 11 + 12 + 23 + 24, (5.1)  

(8f) = 31 + 32 + 33 + 34. (5.2)  

The best agreement with experimental data was obtained for the irreducible representation 4 (see Table 

14) corresponding to the C2’/c magnetic group. The moments of Ni2+ ions of the same Wyckoff site related 

by the inversion centre i’ or by the glide plane c are oppositely aligned. The two-dimensional canted 

magnetic structure is presented in Figure 70a, the agreement between observed and calculated integrated 

magnetic reflection intensities is given in Table 13, and the refined values for Ni2+ moments are summarized 

in Table 15. We first note that the Ni2+ magnetic moments are confined in the ac plane with the major 

component along the (101) diagonal, reaching the values 2.16(9) B/Ni1, 2.15(5) B/Ni2, and 2.19(6) B/Ni3 

at 5 K. It is also clear from the refined magnetic structure that the Ni2+ moments are far from being collinear 

and the tilt from the c axis varies from site to site. There is, however, a tendency of the nearest Ni2 and Ni3 

moments to align in the same direction and “opposite” to the Ni1 moment. We note that the refined 

magnetic structure (Figure 70a) is inversion symmetric, and thus excludes a possibility for magnetoelectric 

coupling necessary for the establishment of macroscopic electric polarization, in contrast to the behaviour 

found in the FeTe2O5Br system. 

a  b  

Figure 70: (a) The ac projection of the unit cell of the magnetic structure of Ni5(TeO3)4Br2. (b) Measured intensity of the (201) and 
(203) magnetic reflections of Ni5(TeO3)4Br2 single crystal as functions of temperature. Inset: The (−201) reciprocal lattice directions 
almost parallel to c, while the (−203) direction is almost parallel to the a axis. 
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Table 15: Refined parameters for the neutron data Ni5(TeO3)4Br2 in magnetically ordered state at T = 5 K and T = 20 K.  is the 

ordered magnetic moment and  the tilt from the c* axis. 

T(K) Ni-site  (B) (°) T(K) Ni-site  (B) (°) 

5 

1 2.16(9) 241(2) 

20 

1 1.5(1) 242(4) 

2 2.15(5) 20(2) 2 1.90(7) 14(3) 

3 2.19(6) 32(2) 3 1.97(8) 23(3) 

RM = 13.1% RM = 18.8% 

 

The temperature evolution of the magnetic arrangement can be extracted from the temperature 

dependence of the (−201) and (−203) reflections and from the refinement of single crystal data collected at 5 

and 20 K. Figure 70b shows that the (−201) and (−203) reflections have very different although correlated 

temperature dependences. When increasing temperature from 5 to 15 K, the intensity of the (−201) 

reflection, in contrast to the (−203) reflection, first slightly increases and for T > 15 K becomes stronger. 

Above 15 K, (−201) stays almost constant up to 24 K and then dramatically reduces approaching TN from 

below. Such behaviour correlates well with the temperature dependence of the magnetization measured for 

       (Figure 69a). On the other hand, the temperature dependence of the (−203) intensity is much less 

dramatic and decreases with increasing temperatures as A(1 −T/TN)2 with  =0.25(1). We note that  =0.25 

is typical for the stacked-triangular antiferromagnets (137). The observed temperature dependence of the 

intensities of the magnetic reflections can have two origins: either a gradual rotation of the moments or the 

nonuniform temperature dependence of the magnetic moment values of different Ni sites. Closer inspection 

of the magnetic structure factors of these two reflections shows that several factors determine such 

different temperature dependence. Firstly, due to the special position    occupied by the Ni1 ions, the 

         ⋅     contribution of this site adds up to the contributions of the other Ni sites for     = (−201) and is 

subtracted for (−203). Secondly, as presented in the inset of Figure 70b, the (−201) reciprocal lattice 

direction is almost parallel to the c axis, while the (−203) direction is almost parallel to the a axis. Due to the 

dipole interaction between the neutron and the magnetic moments, only components perpendicular to the 

scattering vector contribute to scattered intensity. Therefore, the (−201) reflection is sensitive to the Mx 

component and (−203) to Mz. Finally, as the magnetic moment of Ni1 is oppositely aligned to the Ni2 and Ni3 

moments, the decrease of the Ni1 moment would increase the (−201) magnetic intensity and decrease the 

(−203) one. Comparison of the magnetic arrangements refined at 20 K and 5 K in the Ni5(TeO3)4Br2 single 

crystal confirms that the temperature dependence of the Ni1 moment is different from those of Ni2 and Ni3. 

It decreases faster by (67(5) %) than the other two moment values (87(4) % for Ni2 and 92(4) % for Ni3), 

leading to different temperature dependences of the (−201) and (−203) reflections. 

5.3 Measurements in the applied magnetic field 
Increased susceptibility of frustrated systems to external perturbations, prompted us to investigate the 

influence of the applied magnetic field on the magnetic properties of the Ni5(TeO3)4Br2 system. Thus we 

performed a systematic study, including heat-capacity, magnetization, and magnetic-torque measurements. 

This allowed us to determine a magnetic phase diagram for this compound in the temperature range 

between 300 and 1.7 K and in magnetic fields from 0 up to 23 T.  

5.3.1 Heat capacity measurements 

Heat-capacity measurements were performed in the temperature range between 3 and 120 K in zero field 

(Figure 71a) and in applied magnetic fields B of 4, 6, and 9 T (Figure 71b). In zero field a sharp peak is 

detected at Néel temperature TN = 29 K, where also the magnetic-susceptibility data indicate long-range 
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AFM ordering (135), (131). We stress that the transition temperature seems to be almost independent of the 

magnetic field — it only marginally decreases from 28.8(2) K at B = 0 T to 28.0(2) K at B = 9 T. 

Temperature dependence of the heat capacity can be generally described as a sum of three contributions:  

Cp = Clatt + Cshort + Clong (81). Where Clatt stands for a phonon contribution to the heat capacity (84) and is 

calculated in the Debye approximation (equation 3.35). Short-range magnetic correlations far above TN are 

typically described with Cshort  T −2 (equation 3.36) (81), (80), while below TN long-range magnetic-ordering 

open a possibility for spin-wave excitations, resulting in the Clong  Td/n term. In case of a non-zero spin-wave 

gap, this expression can be improved resulting in the expression (equation 3.38) (82). At this point we 

remind the reader that parameter d denotes the magnetic lattice dimensionality, an n = 1 (n = 2) stands for 

antiferromagnetic (ferromagnetic) systems (81). 

  

Figure 71: (a) Temperature dependence of the heat-capacity raw data (scattered symbols) and the fitted lattice contribution (solid 

line) with D = 240(5) K and N = 3.6(1)×10
19

. (b) Low-temperature dependences of magnetic contribution to the heat capacity for 
different magnetic fields: triangles for B = 0 T, squares for B = 6 T, and circles for B = 9 T. Solid line represents the fit for B = 0 T 
based on the expression for Clong, as described in the text. (c) Temperature dependence of the magnetic heat capacity measured in 
zero field obtained after subtraction of the phonon contribution from the raw data. (d) Integrated magnetic entropy contribution 
of the zero-field data.  

As explained in the experimental section 3.2, in order to determine the temperature dependence of the 

magnetic heat capacity, i.e., Cmag = Cshort + Clong, Clatt has to be estimated first. Since no diamagnetic 

isostructural compound is available, we simulated the raw heat-capacity data with Clatt well above TN (T > 3 

|CW|), where the contribution of Cshort is expected to be marginal. Unconstrained fit to the expression for 

Clatt (equation 3.35) yielded N = 3.6(1)×1019 and D = 240(5) K (see solid line in the inset of Figure 71a). At this 

point we stress that N is consistent with the number of atoms in the studied crystal, while the Debye 

temperature is, in contrast to FeTe2O5Br (120 K), closer to pure telluride glasses (115), (116) and also 

comparable to those found in different Ni alloys (138), (139). We subtracted the lattice contribution from the 

raw heat-capacity data to obtain the magnetic contribution to the heat capacity Cmag (Figure 71a). The 

expected peak in Cmag at TN is clearly visible. Further, the magnetic contribution to the heat capacity extends 

up to T  70 K, i.e., well above TN. This underlines the importance of the magnetic short-range ordering 

effects and confirms the low dimensionality of Ni5(TeO3)4Br2. 

The zero-field data below 7 K can be fitted with the expression for Clong (solid line in Figure 71c). In order to 

reduce the number of free parameters, we assume n = 1 (valid for AFM compounds) and d = 2 (layered 
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structure). Additionally, we take into account the spin-wave gap obtained from the AFMR measurements 

(section 5.4.2) =450 GHz (131), which corresponds to = 21.6 K. Hence, BSW remains as the only free 

parameter and the data simulation leads to BSW = 0.0842(1) J/(K3mol). The attempt to fit the low-

temperature data with d = 3 (three-dimensional magnetic structure) failed to satisfactorily describe Cmag. We 

therefore conclude that the intralayer magnetic interactions are dominant in Ni5(TeO3)4Br2.  

To properly account for the heat-capacity curves in applied magnetic field one should consider increasing 

population of lower energy states (140), which is beyond the scope of the proposed model. We highlight 

here the appearance of a very broad anomalous bump at T  10 K in B = 0 T data, which shifts to lower T 

with increasing magnetic field. We tentatively ascribe it to a different temperature evolution of the magnetic 

moments at different Ni sites, as implied by the temperature evolution of the magnetic peaks in the neutron 

diffraction experiment (131).  

The magnetic transition entropy Smag is obtained directly from Cmag after calculating the integral, 

                 
 

 
. The experimentally obtained total entropy value 52(5) J/(K mol) (Figure 71b) 

reasonably well matches with the value 5R ln(2S +1) = 45.7 J/(K mol) expected for the ordering of full 

magnetic Ni2+ (S = 1) moments. We stress that a considerable part (30 %) of the magnetic entropy develops 

at T > TN, implying the importance of short-range ordering effects well above the magnetic transition 

temperature, most likely coming from the two dimensional correlations within the crystal layers. 

5.3.2 Magnetization and magnetic-torque measurements 

Adopting two different measuring techniques — direct magnetization and magnetic-torque measurements 

— we were able to follow the complete response of the magnetization      along the three orthogonal axes 

         (Ma*),         (Mb) and         (Mc), with the external magnetic field applied along the a* crystal axis. The 

magnetization parallel to the magnetic field, Ma*, was determined from magnetization measurements, which 

were performed up to 12 T between 1.5 and 10 K (Figure 72a). 

a  b  

Figure 72: (a) Field dependence of the magnetization M(B) (raw data) and (b) derivative of the magnetization curves, dM/dB, 
measured at different temperatures. 

A well-pronounced inflection point in the M(B) curve can be noticed and is clearly seen as a peak in the 

derivative dM/dB curves in Figure 72. The observed maximum of dM/dB is a result of a “spin-flop-like” 

transition at 11 T, matching the estimation obtained from the AFMR measurements (131), (56). We notice 

that the spin-flop-like field shifts with increasing temperature to lower fields and that at the same time the 

maximum in dM/dB dramatically broadens (Figure 72b). This is likely the result of the increased thermal 

fluctuations of the magnetic moments. Such fluctuations reduce the static average of the moments’ 
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amplitude, which lessens the effect of the magnetic anisotropies and consequently lowers the energy of 

spin-reorientation (lowers the magnetic transition field), as well as smear the transition over a broader 

magnetic field interval. Similar broadening with temperature was observed in the AFMR spectra (section 5.4) 

(134), (131). 

To determine the response of the perpendicular magnetization (Mb and Mc) with respect to the applied field, 

       , magnetic-torque measurements were performed (Figure 73a and b). Due to experimental limitations, 

the magnetic field was applied only perpendicular to the cantilever surface, i.e., parallel to the crystal a* 

axis. Hence, the magnetic torque            was measured only in b and c directions, which revealed 

qualitative responses of Mc and Mb, respectively. The actual response is measured as the capacitance C of 

the capacitor formed by the cantilever, holding the sample, and the fixed plate beneath (see section 3.3.2). 

 

Figure 73: (a) Field and temperature dependencies of the capacity yielding the magnetic torque in the b direction (indicating the 
changes in Mc). The arrows reveal the inflection points. (b) Field and temperature dependencies of the capacity yielding the 
magnetic torque in the c direction, indicating the changes in Mb and (c) derivative dC/dB curves for typical torque measurements. 
(d) Temperature dependence of capacity C(T) at 15 T; straight lines are guides for the eyes and help indicate the change in C(T). 

The measurements of the magnetic torque parallel to b, indicating the response of the component of the 

magnetization along the crystal c direction, Mc, show a pronounced change below 29 K, which can be 

associated with the Néel transition and is almost field independent up to 23 T. The transition is clearly seen 

in Figure 73d, where we plot C(T) at 15 T. At lower temperatures (below 10 K), an inflection point is 

observable in the capacitance curves C(B). This feature is manifested as a peak in the derivative dC/dB curves 

in Figure 73c. The field corresponding to the peak in these curves is in the range of the spin-flop-like 

transition (131), (133) and strongly depends on temperature as it shifts from 11.3 T at 3.7 K up to 16 T at 9.8 

K. However, below 3.7 K, this peak in dC/dB curve splits and at 2.7 K we observe two well-defined peaks at 

9.7 and 11.6 T. 

In contrast to the field and temperature dependencies of Mc (Figure 73a), the component of the 

magnetization along the crystal b axis, Mb, (indicated by the magnetic torque in the c direction) does not 

exhibit any observable feature when going through the transition from paramagnetic (PM) to AFM states. 

This observation is consistent with our previous conclusions that in zero field the Ni2+ moments order in the 

ac crystal plane (131). Below 13 K, we start to observe an exceptionally sharp anomaly superimposed on the 

otherwise smooth capacity curves (Figure 73b). The magnetic field, corresponding to this feature, is strongly 

temperature dependent and monotonically decreases from 14 T at 10.3 K to 7.8 T at 1.8 K. 
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5.4 Antiferromagnetic resonance 
In an attempt to shed some additional light on the magnetism of isostructural Ni5(TeO3)4Cl2 system, Mihaly 

et al. (56) performed a highfield electron magnetic resonance study for frequencies up to 3 THz. Several 

antiferromagnetic resonance modes were identified and their field-frequency relations were determined. In 

order to fit the antiferromagnetic resonance data, a collinear spin arrangement was assumed in a magnetic 

unit cell that is the same as the structural unit cell (56). However, since the Ni-centred octahedra are 

distorted in different ways, one would expect that the Ni2+ magnetic moments are not necessary collinear. 

This is supported also by our neutron diffraction results, which indicate that the magnetic ordering in the 

Ni5(TeO3)4Br2 system differs from collinear. 

In order to learn more about the magnetic interactions and anisotropies in the Ni5(TeO3)4Br2 system, and to 

check the similarity to the Ni5(TeO3)4Cl2 system, we performed magnetic resonance measurements in 

magnetic fields up to 15 T and down to 4 K. Additionally we performed also angular dependence of the 

lowest frequency mode at 4 K. 

5.4.1 Temperature dependence 

Our attempts to detect electron paramagnetic resonance already in the paramagnetic phase, i.e., for T > 29 

K, were not successful. We tried in a broad frequency range for resonance frequencies between 9.7 and 330 

GHz. Apparently, the resonance is so broad that it is currently beyond the detection limit of our experimental 

equipment. On the other hand, we were able to detect the resonance in the antiferromagnetic phase Figure 

74a but only for temperatures below 15 K, i.e., deep in the antiferromagnetic phase. The resonance signal 

measured at L = 324 GHz for         and T = 15 K is very broad, as the peak-to-peak linewidth is 1.8 T. The 

resonance is also shifted towards lower fields (resonance field is 5.05 T) compared to the position expected 

for a usual Ni2+ g  2.5 paramagnetic signal (11.45 T). The extra spike marked with asterisk in Figure 74a is 

due to the oxygen resonance and will be thus from now on ignored. The main resonance has nearly 

Lorentzian line shape (the spectra shown in Figure 74a are distorted due to the admixture of dispersion into 

our signal). 

a b  

Figure 74: (a) The temperature dependence of the antiferromagnetic resonance line shape measured at a Larmor frequency L = 
324 GHz. A narrow spike at B = 5.3 T (marked with asterisk) is due to the oxygen resonance. The temperature dependence of the 
(b) above: the linewidth (symbols), with fit to power law T

 2.8
 (solid line) and belov: the centre of the antiferromagnetic resonance 

mode (symbols). 
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On cooling to low temperatures, the signal changes very dramatically. The first immediate observation is that 

the signal gets significantly narrower with decreasing temperature (Figure 74b). The linewidth at the half 

maximum decreases from B1/2 = 1.8(1) T at T = 15 K to B1/2 = 0.07(1) T at T = 1.5 K. Above T = 15 K, the 

linewidth shows nearly divergent dependence, and for this reason, we were not able to detect signal above 

this temperature. We also notice a small change in the slope in the temperature dependence of the 

linewidth at around T = 5 K. The observed temperature dependence between 15 K and 5 K can be 

phenomenologically described with a power law B1/2   T,  = 2.8(3) (132), even though that AFMR 

linewidth is usually determined by four magnon scattering processes leading to T 4 dependence (141), (142). 

The deviation from the T 4 power law as well as the anomaly at T = 5 K thus probably reflect peculiarities in 

the magnon spectrum in Ni5(TeO3)4Br2. 

The temperature dependence of the centre of the resonance is also very complex (Figure 74c). The 

resonance field first increases with decreasing temperature, reaching a maximum at T = 8 K. Below this 

temperature, the trend reverses and the centre of the line now shifts toward lower fields with decreasing 

temperature. Such temperature dependence of the centre of the line could signal a very complex 

temperature dependence of individual Ni2+ moments as already inferred from the neutron diffraction data. 

5.4.2 Frequency and field dependence 

In this section, we turn to the frequency dependence of the resonance signal described above. A full 

frequency dependence was measured at T = 4 K, i.e., well below TN. A very typical observation for the 

resonance mode shown in Figure 74a is that the centre of the resonance shifts to higher resonance fields 

with decreasing resonance frequency (134). A full dependence of resonance-frequency–resonance-field 

relation for crystal orientation         is shown in Figure 75a. We note that such behaviour is very typical for 

the antiferromagnetic resonance modes. In fact, Mihaly et al. (56) found ten resonance modes in a 

frequency range up to 3 THz in Ni5(TeO3)4Cl2 system. Our mode corresponds to their lowest resonance mode. 

This particular mode softens with increasing field until B = Bsf. At spin-flop field, Bsf, the resonance field goes 

toward zero, and for B > Bsf, resonance frequency increases with resonance field again. From this data, we 

determine the spin-flop field to 10.7 T, which is in agreement with magnetization and magnetic torque 

measurements. We also stress that we managed to detect the next higher resonance mode. At zero field, 

the two modes split into two branches, i.e., the zero-field frequency is for the lowest mode 1(0) = 450(5) 

GHz (equivalent to the thermal energy of 21.6 K), while it is for the second mode 2(0) = 550(8) GHz. The 

zero-field frequencies and the splitting of the two lowest modes, 2 – 1 = 100(8) GHz (equivalent to the 

thermal energy of4.8 K),  confirm the importance of magnetic anisotropies in our system.  

Assuming a case of a simple two-sublattice model, the zero-field resonance frequency is determined by 

magnetic anisotropy and superexchange field (equation 2.23), while  the zero-field degeneracy of the modes 

can be removed by the presence of Dzyaloshinsky-Moriya interaction and the two modes should then vary as  

               
 , where BDM is the field related to the strength of the Dzyaloshinsky-Moriya 

interaction, as pointed out already by Mihaly et al. (56). Considering the crystal structure of the Ni5(TeO3)4Br2 

the Dzyaloshinsky-Moriya term can be present in all nearest-neighbour Ni-Ni superexchange interactions, 

since they all miss the centre of inversion. However, the direction of the Dzyaloshinsky-Moriya vector, 

connecting the magnetic moments on sites 1 and 2 over the ion li bridging the superexchange interaction, 

typically determined as                        (equation 2.13), where        is a normalized vector connecting 

the magnetic moment on site 1 with the ion li and        is a normalized vector connecting the ion li with the 

magnetic moment on site 2, is not straight forward, i.e., all Ni-Ni are coupled via three –O– bridges resulting 

in a different orientation of        for each different superexchange pathway. Consequently estimation for        
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in a two-sublattice model is difficult. On the other hand, the splitting of the two lowest modes can be 

achieved also by the presence of nonaxial anisotropy field. In fact, our magnetization studies, presented 

above, strongly suggest that this term could be large and therefore needs to be taken into account. Finally, 

considering the refined magnetic structure (Figure 70a), we can conclude that it is impossible to say, which 

Ni-site and which superexchange path would values for BA, BE and BDM obtained from the simple two-

sublattice model correspond to. Hence, in order to get information about the particular superexchange 

pathways, more precise description of the system is needed, which we will introduce in the forthcoming 

section 5.5.3. 

5.4.3 Angular dependence 

In the next step, we have measured the angular dependence of the lowest resonance modes. The variation 

of the resonance field with the angle of rotation is shown in Figure 75b. A very strong variation of the 

resonance field with the angle is seen in the a*b plane. Analogous but less dramatic dependence is seen for 

the rotations in the a*c plane. This observation holds for both resonances on each side of the dip in the 

resonance-field–resonance-frequency relation. The angular dependence is so strong that we were able to 

follow the resonance modes only up to 15° away from the a*, i.e., in the a*b plane. In this plane, for angles 

larger than that angle, the resonance mode is already higher than the experimental Larmor frequency L = 

240 GHz and thus becomes unobservable. We stress that a very pronounced angular dependence of the 

resonance modes is rather typical of antiferromagnetic resonance. 

a b  

Figure 75: (a) The frequency dependence of the two lowest antiferromagnetic resonance modes (open circles) at T = 4 K. The solid 
line represents a fit to a model described in the text. (b) The angular dependence of the antiferromagnetic resonance mode in the 

a*b plane (solid circles) as well as in the a*c plane (open circles). The Larmor frequency was set to L = 240 GHz and the 
temperature was T = 4 K. Solid lines are fits to a model described in the text. 

5.5 Calculations and discussion 

5.5.1 Magnetic ordering and anisotropies 

The Ni5(TeO3)4Br2 system unambiguously undergoes a transition to an antiferromagnetically ordered state 

below the Néel temperature TN = 29 K. The magnetic unit cell is equal to the crystallographic one and it is 

made of two [Ni5O17Br2] units with oppositely aligned Ni2+ (S = 1) magnetic moments, giving a zero total 

magnetic moment. All Ni2+ (S = 1) magnetic moments lie in the a*c plane, with two of them, Ni2 and Ni3, 

being nearly parallel, while the central Ni1 moment is significantly canted away. This implies strong magnetic 

anisotropies, which are reflected also in the magnetization measurements. These show a strong angular 

dependence and so the a* axis was identified as the closest to the effective easy axis, the c axis as the 

closest to the hard axis (more precisely, the two magnetization axes are tilted by 30° away from the 

crystallographic axes), while the b axis was found to be the intermediate axis.  
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5.5.2 The phase diagram 

The temperature and field (       ) dependences of the neutron diffraction, magnetization, magnetic torque, 

specific heat, and antiferromagetic resonance imply, not only a rather complicated noncollinear magnetic 

structure, but also an intriguing temperature evolution of individual sublattice magnetizations. In particular, 

the transition from the PM to the AFM state (hereafter labelled as AFM1 phase) at TN = 29 K is seen as a 

sharp peak in Cmag (Figure 71a), a pronounced change in Mc (inset I of Figure 73a), as well as the occurrence 

of the magnetic reflections in the neutron diffraction experiment (Figure 70b). This transition is almost 

independent of the applied magnetic field up to 23 T. Below TN, however, a nonmonotonic temperature 

dependence of the magnetization as well as the intensity of (−201) and (−203) magnetic reflections suggest 

that Ni1 and Ni2,3 magnetic moments have different temperature dependences. Moreover, the heat 

capacity indicates a very broad bump at T  10 K, which rapidly shifts to lower temperatures with increasing 

field. Around this temperature, a spin-flop-like transition becomes noticeable between 10 T and 15 T 

(depending on the chosen magnetization projection Mi) as an abrupt change in Mb (Figure 73b) as well as in 

Ma* (Figure 72) and Mc (Figure 73a), where the corresponding changes are less sharp. The maxima, given by 

the peaks in the derivatives dMa* /dB and both dC/dB (indicating the changes in Mb and Mc), seem to occur 

at slightly different fields, but they get closer with decreasing temperature. 

 

Figure 76: Phase diagram of the Ni5(TeO3)4Br2 compound. Empty circles and triangles stand for the maxima in dC/dH (torque 
measurements) corresponding to the changes in Mc (circles) and Mb (triangles), solid stars correspond to the peak in dMa* /dH 
obtained from magnetization measurements, solid black rhombuses represent peaks in the temperature dependence of the heat 
capacity, and black empty squares represent the sudden change in the C(T) slope obtained from the torque measurements, 
corresponding to changes in Mc. The solid lines show the transitions predicted by our molecular-field model, while the dashed 
lines represent the transition-field boundaries obtained when tilting the applied field from the a* by 5°, which corresponds to the 
experimental uncertainty of the crystal orientation. 

We suggest that, at low temperatures, increasing the applied magnetic field along a* axis above 10 T 

changes the arrangement of the magnetic moments and causes a transition from the in-plane AFM1 

ordering to a more complex high-field AFM1’ ordering, with the magnetic moments canted out of the ac 

plane. In Figure 76 we show the corresponding B-T phase diagram of Ni5(TeO3)4Br2 based on our heat-

capacity and magnetization measurements. The AFM1-AFM1’ transition is reminiscent of a spin-flop 

transition for a simple two-sublattice model. It is thus not surprising that it is seen as softening of the lowest 

AFMR mode. It becomes progressively more hindered with increasing temperature and is not observable any 

more above 15 K, where also the AFMR signal disappears (131). Finally, we note that the strong dependence 

of the spin-flop-like transition on the temperature and the orientation of the applied magnetic field, 

underline the importance of magnetic anisotropy for the magnetic ground state of Ni5(TeO3)4Br2. 
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5.5.3 Molecular-field model 

In this section we extend the basic molecular-field model, developed in section 2.4.1, to properly describe 

our system. Based on the crystal structure, we expect the dominant superexchange interactions to take 

place among Ni2+ spins (S = 1) in the [Ni5O17Br2] basic building block. The Ni-Ni superexchange pathway 

includes oxygen bridges, but the superexchange coupling between the different Ni sites should differ from 

pair to pair. For instance, the distances between the Ni2 and Ni3 sites and between the Ni1 and Ni2 sites are 

2.82 and 2.98 Å, respectively, and their *NiO6] octahedra connect via face sharing. The distance between the 

Ni1 and Ni3 is already larger, i.e., 3.29 Å, but the connectivity is now assured by edge sharing. Finally, these 

building blocks are connected with corner sharing so that the distances between the Ni sites on 

neighbouring [Ni5O17Br2+ units increase to 3.4 Å (Ni3-Ni2), 3.57 Å (Ni3-Ni1), and 3.58 Å (Ni2-Ni3). Other Ni-Ni 

distances are already larger and the superexchange bridges involve several ligand atoms, making these 

superexchange interactions negligibly small. We also neglect the superexchange interactions between the 

layers, as already suggested by Mihaly et al. (56). A complete network of Ni sites in a layer projected along 

the reciprocal a* direction with the notation of the superexchange coupling constants is shown in Figure 68. 

Since J1 and J5 couplings both act between the Ni2 and Ni3 sites, i.e., former within and latter between the 

neighboring basic units, only the Ni2-Ni3 effective superexchange coupling constant (J1 + J5) can be 

determined. The same argument applies also for the J3 and J4 superexchange couplings between Ni1 and Ni3 

sites, and so the effective superexchange constant (J3 + J4) replaces them in our model. 

As mentioned above, the [NiO6] octahedra are strongly distorted, so we will, in addition to the 

superexchange interaction, assume the presence of significant single-ion anisotropy. We stress that single-

ion anisotropy is frequently very relevant for Ni2+ ions in distorted [NiO6] octahedral (143), (144), (145), (31). 

Furthermore, as already mentioned, there is almost no symmetry restriction for the Dzyaloshinsky-Moriya 

antisymmetric superexchange interaction, which is thus, in principle, allowed for each Ni pair. 

A complete Hamiltonian of our system can therefore be written as  

              
   

            
 

                  

   

              
 

 (5.3)  

Here, the components of the above Hamiltonian are the superexchange interaction between nearest 

neighbours, single-ion anisotropy, Dzyaloshinsky-Moriya antisymmetric exchange interaction, and the 

Zeeman term. The components of the single-ion anisotropy tensor Dj depend primarily on the local Ni2+ 

environment and thus are different for the Ni1, Ni2, and Ni3 sites. Applying the molecular field 

approximation, we can rewrite the above Hamiltonian as a magnetic free energy F per Ni site, 

                  
   

                
 

                    

   

 
 

 
             
 

 (5.4)  

In the above free energy expression, we introduced ten magnetic sublattices (i,j = 1, ..., 10) see Figure 68a for 

their numbering with corresponding magnetizations                 , where N is the number of Ni2+ 

magnetic ions in the j-th sublattice, g is the g factor of the free electron, and     indicates the thermal 

average. The molecular field constants are defined as follows: 

    
 

      
 
    (5.5)  
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   (5.6)  

     
 

      
 
       (5.7)  

Having written the expression for the magnetic free energy, we can follow the procedure presented in 

section 2.4.1 to obtain the expression for antiferomagnetic resonance, i.e., we calculate the mean-field 

                acting on the sublattice magnetization       (l = 1, ..., 10) and assuming                    
   , 

where             , we obtain the expression for 2l linear equations for l resonant modes. Unfortunately, in 

our experiments we were only able to detect the lowest two resonant modes, hence we cannot take the 

advantage of using all of the derived equations. 

To sum up, we end up with expression for free energy, and expressions for the two lowest antiferromagnetic 

resonant modes, and a bunch of free parameters. Hence, before starting the calculations, we would first like 

to narrow down the number of free parameters. 

5.5.4 Calculations of the single-ion anisotropies 

It is obvious from the model described above that we are dealing with a very complicated magnetic structure 

and that large number of parameters is needed to adequately describe it. For this reason, we decided first to 

calculate the single-ion anisotropies and then to use these parameters as the input in the fitting procedure. 

Spin parameters were calculated in collaboration with Philip Tregenna-Piggott from the Laboratory for 

Neutron Scattering, ETHZ and Paul Scherrer Institute, Switzerland. 

The orientation of the single-ion anisotropy tensor   and its principal values were estimated by angular 

overlap model (AOM) calculations. The method proceeded in two steps. First, the ligand field matrix was 

constructed and diagonalized with 1000 unique directions of the magnetic field vector. This step was 

accomplished using program LIGFIELD developed by Bendix (146). AOM parameters for the Ni-O, Ni-Cl, and 

Ni-Br bonding interactions were estimated from values of 10Dq documented for homoleptic Ni2+ centres. 

Values for e and e were derived assuming e = 0.2 e. The parameter e  was assumed to vary with distance 

as a function of 1/r5 and e as a function of 1/r6. The Racah and spin-orbit coupling parameters were fixed at 

80 % of their free-ion values, and the orbital Zeeman interaction reduced accordingly. Next, the calculated 

energies of the triplet ground state manifold were modelled by the general S = 1 spin Hamiltonian 

    ⋅  ⋅          ⋅  ⋅      . Least-squares refinement of the eigenvalues of the above Hamiltonian to 

the three lowest lying eigenvalues of the AOM calculations yielded the   tensor and   matrix in the 

reference coordination frame. The principal values were determined via the transformations       
      

and      
     . Here,    and    refer to the   tensor and   matrix in eigencoordinate frames in which 

they are diagonal. The transformation matrices UD and Ug contain the direction cosines relating the two 

coordinate systems, from which the Euler angles can be calculated. The results of the calculations are 

summarized in Table 16. Here, we also introduced the standard planar anisotropy E = ½(Dxx − Dyy) and D = Dzz 

− ½(Dxx + Dyy) axial anisotropy constants. 

It is important to emphasize the extent to which the single-ion anisotropy can be estimated from these AOM 

calculations. The ratio E:D is governed principally by the angular disposition of the ligands, obtained from the 

crystallographic data, and the relative strength of the bonding interactions. We are therefore confident that 

our estimates of the bonding interactions are reasonable and hence the ratio of E to D should be quite 

reliable. We have allowed for covalency by reducing the Racah and spin-orbit coupling parameters to 80 % of 

their free-ion values. However, the reduction of these parameters could conceivably be somewhat different 
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with the result that the absolute magnitude of the splitting of the 3A term is likely to differ from the values 

computed. Finally, we note that the calculated anisotropy of the Ni1 centre is very large with Dzz and Dyy of 

similar magnitude. In this instance, it is difficult to establish with certainty the orientation of the    tensor by 

the least-squares fitting procedure adopted. 

Table 16: Calculated components of the single-ion anisotropy tensors   and the Euler angles , , and  defining their orientation 

in respect to the crystallographic system. See text for details. 

parameter Ni1 Ni2 Ni3 

Dzz(K) 23.83 6.14 −20.58 

Dxx(K) −1.72 −1.17 12.41 

Dyy(K) −22.11 −4.98 8.17 

D(K) 35.75 9.22 −30.87 

E(K) 10.20 1.90 2.12 


(°) 89.99 359.76 309.69 

(°) 89.85 56.10 52.66 

(°) 270.0 77.47 84.77 

5.5.5 Calculations of the spin parameters 

Only now, we can try to deduce the spin system parameters (   ,   ,       ). To narrow down the number of 

parameters in the magnetic free energy (5.4) and make the problem tractable, we first make certain 

assumptions. As mentioned above, in the basic unit, the Ni2 and Ni3 moments are nearly collinear (Figure 

68) as well as they have connecting –O– bond angles < 90°, so we will assume the ferromagnetic J1 

interaction between these two spins. On the other hand, the Ni1 moment tends to point in the opposite 

direction although tilted away from the direction defined by Ni2 and Ni3 moments. For this reason, we 

assume that the superexchange interactions between Ni2 and Ni1 J2, as well as between Ni3 and Ni1 J3, are 

antiferromagnetic. From the orientation of the spins in the two [Ni5O17Br2] units forming the magnetic unit 

cell (Figure 68), we anticipate the antiferromagnetic interactions J6. To account for tilting of the Ni moments 

in the a*c plane, we use the calculated site dependent single-ion anisotropies (Table 16) but leave the 

scaling of the eigenvalues as a free parameter. 

The simulation strategy was to model the free energy (5.4) in order to describe simultaneously the magnetic 

structure i.e., the equilibrium orientations obtained from the neutron diffraction (Figure 70a), the angular 

dependence of the magnetization (Figure 69c), and the frequency (Figure 75a) and angular (Figure 75b) 

dependence of the antiferromagnetic resonance data. The final set of parameters consistent with all 

experiments is given in Table 17. In order to obtain the magnetic structure Figure 70a, we also added the 

Dzyaloshinsky-Moriya exchange interactions between the Ni1 and Ni2 sites        and between the Ni2 and Ni3 

sites        (Table 17). The fact that we were able to simultaneously describe three different experiments 

suggests that our parameters are close to the correct values. 

Table 17: Summary of parameters (in Kelvin) used for fitting of the neutron diffraction, magnetization, and antiferromagnetic 
resonance data measured on Ni5(TeO3)4Br2 single crystal. The orientations of Di tensors are the same as in Table 16. 

 J1 + J5 J2 J3 + J4 J6 D1 D2 D3               

x −0.8 34.7 56.4 10.7 −0.8 −0.6 6.1 0 0 

y −19.6 18.4 49.6 2.0 −10.8 −2.4 4.0 -5.2 0.1 

z −1.2 5.8 12.6 25.4 11.6 3.0 −10.0 0 0 
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Based on the obtained parameters (Table 17), we can draw the following conclusions. 

1. The effective ferromagnetic interaction between Ni2 and Ni3 is most likely a result of < 90° bonding Ni–O– 

Ni angles and seems to explain the relatively small value of the frustration. The derived frustration 

parameter f = |CW |/TN = 1.7, which in comparison with the lower boundary, f = 10, for strongly frustrated 

materials (110), indeed implies that the triangular Ni2+ topology does not induce strong frustration effects. 

The remaining frustration is, in fact, a consequence of large magnetic anisotropies. 

2. Similar magnitudes of superexchange interactions among the Ni2+ (S = 1) between and within [Ni5O17Br2] 

entities J6 and J2 respectively, suggests that the [Ni5O17Br2] cannot be considered as magnetically isolated 

units.  

3. The determined single-ion anisotropies for Ni-sits are of the same order of magnitude as the 

superexchange interactions, hence their presence should strongly influence the Ni5(TeO3)4Br2 magnetic 

properties. Further, we stress that for the Ni3 site D has a different sign than for Ni1 and Ni2 (see Table 16 

and Table 17). Hence, it is likely that the Ni3 site anisotropy is responsible for the peculiar temperature 

dependence of the Ni moments detected below TN by neutron diffraction as well as by the magnetization 

and specific heat measurements. 

4. The large single-ion anisotropy constants originate from the strongly distorted Ni2+ octahedral 

surroundings. The difference in the single-ion anisotropy direction implied by the different directions of the 

octahedral deformations is the main reason for the Ni2+ moment tilting and for the noncollinear low-

temperature magnetic structure. 

5. At the same time, the magnetic anisotropies (Ji
,  = x,y) further suppresses quantum fluctuations 

arising from the geometrical frustration and stabilizes the long-range antiferromagnetic ordering below TN. It 

is therefore clear that the single-ion anisotropy in addition to superexchange anisotropy plays a vital role in 

Ni5(TeO3)4Br2 system. Our results thus contradict the model proposed for isostructural Ni5(TeO3)4Cl2 by 

Mihaly et al. (56), where the single-ion anisotropy was neglected. 

In order to understand how the applied magnetic field affects the spin order at low temperatures, we 

minimized the magnetic free energy (5.4) for         considering the calculated parameters (Table 17). This 

way the field dependence of the magnetization was calculated and the spin-flop-like transition was 

determined from the inflection points in the simulated M(B) curves. In the zero-temperature limit the AFM1 

to AFM1’ transition is predicted at  10 T (Figure 76). We stress that the transition field and the broadness of 

the peak in the dM(B)/dB curves were found to be extremely sensitive to the applied magnetic field 

direction, i.e., deviation of the applied field for less than 5° causes the transition field to change for more 

than 1 T. We stress that such enhanced response directly reflects the complexity of the studied system. 

Thus, we suspect that the shift toward lower fields and the sharpness of the peak in Figure 73b are likely to 

be of experimental origin. The second peak at 11.6 T in the dC/dB curve at 2.7 K in Figure 73b is beyond the 

scope of our model and might reflect another transition due to higher order terms in the spin Hamiltonian. 

In order to describe the magnetic response of Ni5(TeO3)4Br2 also at finite temperatures, we assume the 

temperature dependence of the sublattice magnetizations (147) 

                    
      

   

   
   (5.8)  

where     
   

 is the effective magnetic field acting on a given sublattice, 
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  (5.9)  

is the Brillouin function, and          is the sublattice magnetization at zero temperature. We further assume 

that the superexchange interactions and anisotropy constants are temperature independent. As a result, our 

model correctly predicts that the spin-flop-like field should increase with increasing temperature, matching 

well with the observed behaviour (Figure 76). We stress that the agreement between the theory and our 

measurements is particularly decent since all the parameter are fixed based on antiferromagnetic resonance 

and neutron-diffraction studies. Experimentally observed different transition fields for different 

magnetization components most likely originate from the small deviations of the crystal orientation between 

different experiments. To confirm this assumption, we calculated the spin-flop-like transition filed for the tilt 

of the applied field from the a* direction by 5°. The results  show that all the measured transition fields up to 

 10 K are still within the field region given by our model (dashed lines in Figure 76, which correspond to the 

tilt of the applied field from the a* direction by 5°). Considering that our molecular-field model is valid at low 

temperatures and that at higher temperatures deviations from the average sublattice magnetization values 

are increased, discrepancy between the theoretical and experimental results above 10 K, i.e., above  0.4TN, 

is inevitable. The predicted Néel temperature is 40 K. The model could possibly be improved by introducing 

temperature-dependent superexchange interactions and anisotropy constants—similarly as done in ref. 

(147) — which would enable a more accurate estimation of the Néel temperature as well as potentially 

reproduce the observed strong temperature dependence of the spin-flop-like field at higher temperatures. 

Lastly, in Figure 77 we show the calculated zero-temperature magnetic structures for B = 0, 19, and 30 T. The 

AFM1 phase, identified by AFMR and neutron-diffraction experiments (131), consists of 

antiferromagnetically arranged [Ni5O17Br2] clusters Figure 77c. In agreement with the magnetization 

measurements, our simulations suggest that the magnetic structure is almost completely field independent 

up to 10 T. 

 

Figure 77: Calculated orientations of all ten sublattice magnetizations in the ac plane for the magnetic field      applied in the a* 
direction (the b axis is pointing out of the paper) for (a) B = 30 T, (b) B = 19 T, and (c) B = 0 T. Red, green, and blue arrows 
correspond to three nonequivalent sites: Ni1, Ni2, and Ni3, respectively. 

At this point, the Ni2+ (S = 1) moments start to bend toward the crystalline b axis, marking the spin-flop-like 

transition to the AFM1’ phase (Figure 77b). During this rearrangement, the magnetization component Mb 

starts to grow. The moments continue their reorientation up to the field of  24 T, where the magnetic 

structure once more drastically changes. Above this field Ni5(TeO3)4Br2 can be described with another type of 

magnetic ordering (labelled as AFM2 phase and shown in Figure 77a). In this phase the arrangement is again 
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almost planar; however, it differs significantly from the AFM1 phase — the intercluster ordering becomes 

ferromagnetic, with central Ni2+ moment inside each cluster still being antiparallel to the other four. Such 

transition is a clear demonstration of the competition between intracluster and intercluster interactions. For 

B > 24 T the external magnetic field suppresses the intercluster AFM interactions but is still weaker than the 

leading intracluster AFM interactions. Additionally, we note that the AFM2 phase breaks the inversion 

symmetry and thus opens a possibility for magnetoelectric coupling as well as macroscopic electric 

polarization. However, the existence of the AFM2 phase, predicted by our simulations for B > 24 T, requires 

experimental verification by magnetic measurements in higher fields.  

5.6 Summary and conclusion 
In summary, our systematic temperature and magnetic field dependent heat-capacity, magnetization, 

magnetic torque, neutron diffraction, and antiferromagnetic resonance measurements allowed us to draw a 

B-T phase diagram up to 23 T and down to 1.5 K for the two-dimensional Ni5(TeO3)4Br2 compound. The 

contribution to the magnetic heat capacity observed at temperatures as high as 2.3TN suggests a 

development of short-range magnetic correlations at rather high temperatures. Additionally, the short-range 

correlations are enhanced by the quasi-two-dimensional nature of the investigated spin system. Below TN = 

29 K, the B-T phase diagram is very rich. It consists of a number of low-temperature AFM phases governed 

by the presence of strong magnetic anisotropies and the competition between the intracluster and 

intercluster superexchange interactions. The zero-field AFM1 phase is characterized by a planar AFM 

arrangement of the two in-layer neighbouring [Ni5O17Br2] magnetic clusters within a magnetic unit cell. 

Unlike in FeTe2O5Br, magnetic order here preserves the crystal lattice inversion symmetry, and thus excludes 

a possibility for magnetoelectric coupling necessary for the establishment of macroscopic electric 

polarization. When the magnetic field is applied along the a* axis, the spin-flop-like transition to the AFM1’ 

phase occurs at approximately 10 T. Theoretical analysis of the data with the molecular field formalism 

suggests that the magnetic field does not affect all the [Ni5O17Br2] clusters in equal manner. The magnetic 

structure of clusters with the majority of the magnetic moments aligned close to the field direction stays 

almost intact, whereas the orientations of the Ni2+ magnetic moments in the other half of the clusters 

change from planar to a more complex out-of-plane arrangement. This transition is shifted to higher fields 

with increasing temperature, as indicated by our calculations. Finally, a stable AFM phase is predicted above 

24 T, where [Ni5O17Br2] clusters are ordered ferromagnetically while the intracluster ordering of the central 

and the four surrounding moments remains antiferromagnetic. Interestingly, the AFM2 magnetic structure 

breaks the inversion symmetry, and thus opens a possibility for the magnetoelectric coupling. This prediction 

indeed makes the future search for the experimental proof of the existence of the AFM2 phase even more 

appealing. 

At last, we stress that the observed richness of the phase diagram is a direct consequence of the competition 

between intracluster and intercluster superexchange couplings on the one hand and single-ion magnetic 

anisotropy on the other. The calculations results also suggest that the strong single-ion anisotropies in 

addition to the superexchange anisotropy prevail over the geometrical frustration and are crucial for the 

occurrence of the long-range magnetic ordering with the noncollinear sublattice structure. To conclude, both 

our measurements and our modelling show that building of layered systems from strongly coupled clusters 

might result in an intriguing sequence of AFM structures driven by the applied magnetic field. 
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6 Concluding remarks 
In conclusion, we have investigated the impact of magnetic frustration on the magnetic ground state of two-

dimensional systems of magnetic clusters with triangular geometry possessing lone pair electrons, namely 

FeTe2O5Br and Ni5(TeO3)4Br2 compounds, and explore their magnetic and electric properties. The aim was to 

see, if Te4+ lone pair electrons, which were at first used solely from the synthesis point of view as a tool for 

forming low-dimensional structures, be as well considered as a coupling bridge between magnetic and 

electric degrees of freedom, i.e., does the roll of Te4+ as a bridging ion in the superexchnage pathways 

between magnetic moments also mean that Te4+ lone pair electrons will act as a source of exchange-striction 

and consequently drive off-centre distortions, manifesting in macroscopic electric polarization. 

In line of our research we used the following techniques. Magnetic susceptibility measurements (sections 

4.2.1, 4.5.2, and 5.2.1) were employed to obtain bulk magnetic response and general anisotropies of the 

system. Magnetic torque and magnetization measurements in very high magnetic fields (section 5.3.2) 

enabled us to study the spin-flop transition. Neutron scattering measurements were essential for the 

determination of the low-temperature magnetic structure (sections 4.3.1, 5.2.2) and the temperature 

dependence of the correlation length above the Néel transition (section 4.5.4), where magnetic order is 

limited to the two dimensions; finally inelastic scattering was used to study spin waves (section 4.6.1). As 

local probe techniques we used electron (section 4.2.2) and nuclear magnetic resonance (sections 4.3.3 and 

4.5.3) measurements to determine the temperature dependence of the spin correlation functions, 

investigate long-range magnetic ordering, as well as measure spin-gap and magnon spectra (section 5.4). 

Additionally, muon spin relaxation was measured (section 4.3.2) to probe evolution of short- and long-range 

ordered phases. Finally, dielectric measurements were employed to trace the electric polarization and track 

the ferroelectric transition in the applied magnetic field (sections 4.4.3 and 4.5.6). The impact of the electric 

polarization on the crystal lattice was investigated by precise thermal expansion (4.4.1) and synchrotron x-

ray diffraction (section 4.4.2) measurements. The broad aspect of utilized experimental techniques enabled 

us a comprehensive as well as detailed insight into the investigated systems. In addition, our work has also 

significant theoretical aspect. This consists of the representation theory used to describe the 

magnetoelectric coupling mechanism in FeTe2O5Br (section 4.4.4) as well as the molecular filed model and 

Kubo-Tomita theory, which were employed to explain the behaviour of the antiferromagnetic resonance in 

Ni5(TeO3)4Br2 (section 5.5) and thus enabled us to determine the most significant magnetic anisotropies. The 

extensive summary and conclusion on the investigated systems has already been given in the end of 

chapters 4 and 5 thus we provide below only a short overview of the main experimental findings and their 

physical interpretation. 

The most prominent result of our investigation is undoubtedly the discovery of the novel magnetoelectric 

multiferroic state in the FeTe2O5Br system (chapter 4). This phase exists below TN2 = 10.6 K and it is probably 

provoked by magnetic frustration inducing incommensurate amplitude modulated magnetic structure, with 

eight different modulation phases. This breaks the inversion symmetry of the crystal structure, and thereby 

opens the possibility for macroscopic electric polarization. Further we propose that this effect is driven by 

exchange-striction mechanism involving sliding of the amplitude modulated magnetic waves that induces 

off-centre distortions of the superexchange bridging Te4+ ions, enforcing polarization of Te4+ lone pair 

electrons, which finally manifests as macroscopic electric polarization (section 4.4.4). Moreover, we manage 

to suppress electric polarization with magnetic field applied along the incommensurate direction of the 

magnetic order, which indicates that the responsible magnetoelectric coupling mechanism might indeed be 

applicable in the novel spintronic devices. Additionally, we identified a narrow temperature region, 

preceding the multiferroic phase, where high-temperature incommensurate magnetic phase exists. Since in 

this phase no trace of ferroelectricity has been detected, we assume that inversion symmetry of the crystal 
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lattice is preserved. Finally, we note that strong magnetic frustration and low dimensionality of the 

FeTe2O5Br system manifest also as short range ordering effects, persisting far (5TN) above Néel 

temperature. 

On the other hand, the magnetic frustration in the Ni5(TeO3)4Br2 system is found to be less expressed. This is 

evident already from the lower value of the frustration factor, determined from the ratio between Néel and 

Curie-Weiss temperatures (section 5.2.1), as well as from the observed magnetic structure (section 5.2.2), 

which is considerably less complex in comparison to FeTe2O5Br system. In fact, magnetic structure preserves 

the inversion symmetry of the crystal lattice, thus excluding the possibility for macroscopic polarization. The 

magnetic anisotropies and superexchange interactions determined from fits of field and angular 

dependences of antiferromagnetic resonance to the molecular field model seem to explain that, as 

anisotropies were found to be strong, thus favouring long-range magnetic ordering over the geometrical 

frustration. In addition, when magnetic field was applied perpendicular to the crystal layers, spin-flop like 

transition was observed at around 10 T. And further, when considering the obtained molecular field 

parameters, calculations predict another transition at 24 T. The estimated magnetic structure of this phase 

however breaks the inversion symmetry, and thus open the possibility for ferroelectric order. Again, similar 

to FeTe2O5Br, low-dimensional nature of Ni5(TeO3)4Br2 system is evident from short-range ordering effects, 

which can be noticed up to 2TN. 

In the end, magnetic frustration, imposed by low-dimensional triangular spin arrangement, is indeed 

responsible for reach magnetic phase diagrams observed in these compounds. The resulting magnetic 

phases are often extremely complex and have typically very low symmetry. This in particular, opens the 

possibility for intriguing new physical phenomena. Amazingly, following the synthesis of such systems, p-

element cations with lone pair electrons (e.g., Te4+, Se4+, As3+, and Sb3+) are met. As lone pair electrons are 

considered to be stereochemically active, they are often assumed to be easily polarisable. Consequently, 

low-dimensional magnetically frustrated systems involving lone pair electrons introduce a great opportunity 

for electric polarization and complex magnetic ordering to coexist and possibly allow manipulation of the 

electric polarization with external magnetic field. This coupling might be further improved by the use of 

magnetic ions with high spin number, e.g., transition metal ions in high-spin electronic coordination. Hence 

we propose to look for new magnetoelectrics in the vast family of M-T-O-X compounds (M = Cu, Ni, Fe, X = 

Cl, Br, I, T = Te, Se, Sb, Bi, Pb), as they frequently possess strong magnetic frustration as well as T ions with 

stereochemically active lone-pair electrons. 
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8 Extended abstract in Slovene (Razširjen prevod v slovenščini) 

8.1 Uvod 
Zanimanje za nizkodimenzionalne spinske sisteme je v zadnjih nekaj desetletjih močno naraslo, saj le-ti 

pogosto kažejo nova nenavadna magnetna stanja, ki vodijo do novih zanimivih magnetnih pojavov, npr. 

spinske-tekoče faze v Haldanovih verigah (1), (2). Takšno obnašanje je še bolj izrazito v primeru, ko si 

spinsko-spinske interakcije nasprotujejo oz. tekmujejo za prevlado, saj to privede do tako-imenovane 

magnetne frustracije. Za to pa velja splošno prepričanje, da je močno povezana z magnetnimi lastnostmi v 

plastovitih visokotemperaturnih superprevodnikih (kuprati (3) in oksipkniktidi (4)), z močno magneto-

električno sklopitvijo v multiferroikih (5), (6), (7), kot tudi izjemno degeneracijo osnovnih stanj v sistemih s 

spini urejenimi v Kagomé (8), (9), (10), Shastry-Sutherland (11), (12) in še nekaterih drugih trikotnih vzorcih. 

Za vse te sisteme je značilno, da zaradi njihove posebne razporeditve magnetnih momentov - večinoma 

trikotne - ali zaradi nasprotujočih si magnetnih interakcij, vse izmenjalne interakcije v sistemu ne morejo biti 

zadoščene hkrati (13). Posledična magnetna frustracija lahko pripelje do močne degeneracije osnovnega 

stanja in s tem ojači vlogo kvantnih fluktuacij. Po drugi strani pa so ti sistemi zelo občutljivi na motnje, na 

primer, magnetne anizotropije tipa Dzyaloshinski-Moriya ali antisimetrične izmenjalne interakcije, ki lahko 

odpravijo degeneracijo, odprejo vrzel v spektru ekscitacij, zatrejo kvantne fluktuacije, in stabilizirajo 

magnetni red dolgega dosega. Posledično so realni frustrirani nizkodimenzionalni magnetni sistemi ponavadi 

zelo zapleteni in imajo zanimive magnetne lastnosti, ki lahko pomembno pripomorejo k nadaljnjemu 

tehnološkemu napredku. Po drugi strani, pa veliko opaženih pojavov še ni popolnoma razumljenih tako, da 

teče intenzivno iskanje novih modelnih sistemov, ki bi omogočili test obstoječih teorij.  

Do nedavnega je bila večina realnih magnetno frustriranih sistemov odkrita na osnovi njihove topologije, 

določene iz strukturnih podatkovnih baz. Z drugimi besedami, znanstveniki so med že obstoječimi sistemi 

iskali tiste, v katerih bi lahko pričakovali geometrijsko frustracijo. Po drugi strani pa so bili poskusi 

sistematičnega načrtovanja novih frustriranih sistemov z novimi sinteznimi postopki presenetljivo redki. 

Premik se je zgodil v zadnjih nekaj letih, saj se je razvilo več novih sinteznih pristopov za izdelavo novih 

frustriranih magnetnih anorganskih spojin. Ena od sinteznih strategij, ki se je izkazala za zelo uspešno, je 

uporaba kationov z neveznim elektronskim parom. Za nevezni elektronski par so že Galy in ostali pokazali, da 

je njegova efektivna prostornina približno enaka prostornini O2- iona (14). Posledica tega pa je, da se lahko ti 

elementi, če so zmešani s prehodnimi kovinam v prisotnosti halogenih ionov, obnašajo kot tako-imenovane 

"kemične škarje" (15), ki zmanjšajo število izmenjalnih poti med magnetnimi ioni in posledično oblikujejo 

nizkodimenzionalne magnetne strukture.  

Dejanski sintezi koncept (16) temelji na pripravi oksohalidnih spojin, ki vključujejo katione v takem 

oksidacijskem stanju, kjer imajo stereo-kemično aktiven nevezni elektronski para (npr. Te4+, Se4+, As3+, in 

Sb3+). Prisotnost stereo-kemično aktivnega neveznega elektronskega para omogoča asimetrično ali 

enostransko koordinacijo dotičnega kationa. Poleg tega, tako močna Lewisova kislina (npr. Te4+) v večini tvori 

vezi samo s kisikom, medtem ko se kationi prehodnih kovin v oksohalidnem okolju vežejo tako s kisikom kot 

halogenimi elementi. Kot rezultat, stereo-kemično aktivni nevezni elektronski pari v navezi z halogenimi ioni 

zmanjšujejo število vezi kar pripelje do bolj odprte strukture in povečanja možnosti za nizkodimenzionalno 

konfiguracijo. Ta sintezni koncept je bil uspešno uporabljen pri odkritju več podobnih spojin, npr. Cu2Te2O5X2 

(X = Cl, Br) (17), CuSb2O3Br (18), in Cu4Te5O12Cl4 (19). 

Zelo zanimivo je tudi dejstvo, da so v ferroelektričnih materialih, npr. Bi3+ v BiMnO3 (20), nevezni elektronski 

pari prepoznani kot nosilci električne polarizacije. Razlaga temelji na tem, da je nevezne elektronske pare 

zaradi stereo-kemične aktivnosti lahko polarizirati, to pa jih postavlja v vlogo gonilne sile za izven-centrične 
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strukturne spremembe, ki so bistvenega pomena za nastanek električne polarizacije v teh materialih. Tako se 

nevezni elektronski pari zdijo zelo primerni zato, da vzbudijo pojav magnetne frustracije in električne 

polarizacije hkrati, kar pa bi lahko pripeljalo do sklopitve med magnetnim in električnim redom.  

Praktična realizacija soobstoja magnetne in feroelektrične ureditve je bila odkrita v tako-imenovanih 

multiferroičnih materialih (21), (22), (23), (24), (25). V primeru, ko je magneto-električne sklopitev močna, se 

da električno polarizacijo obračati z zunanjim magnetnim poljem (5), (6), in obratno, lahko se kontrolira 

magnetno ureditev z zunanjim električnim poljem (7). To pa obeta veliko za razvoj novih naprav iz področja 

spintronike in shranjevanja podatkov (26), (27). Tako obnašanje je bilo tipično opaženo v kompliciranih 

magnetnih ureditvah z zlomljeno simetrijo inverzije. To je v sistemih, kjer se električna polarizacija razvije 

simultano z inkomenzurabilnim magnetnim redom (28). Splošno prepričanje je, da je spiralni magnetni red 

ključen za pojav nelinearnega magneto-električnega pojava v perovskitnih manganitih RMnO3 (29) (R-

element iz skupine redkih zemelj) in Ni3V2O8 (30), saj odstrani center inverzije in s tem omogoči 

ferroelektrinčno ureditev. Klub temu pa so bili v dosedanjem obsežnem iskanju novih magneto-električnih 

multiferroikov nevezni elektronski pari tipično obravnavani zgolj kot izvor električne polarizacije; in ne kot 

sredstvo za sintezo nizkodimenzionalnih frustriranih magnetnih konfiguracij, pomembnih za vzpostavitev 

zapletene magnetne ureditve z zlomljeno simetrijo inverzije. Magnetno frustrirani materiali, ki vsebujejo 

nevezne elektronske pare, zato predstavljajo skoraj povsem neraziskano področje v raziskavah magneto-

električne sklopitve.  

Glavna vprašanja, ki predstavljajo motiv za delo predstavljeno v tej disertaciji, so torej: (i) kakšen je vpliv 

magnetne frustracije na osnovno magnetno stanje dvodimenzionalnih sistemov magnetnih skupkov s 

trikotnimi geometrijo, (ii) kakšne so njihove magnetne in električne lastnosti, in (iii) kako se različne 

prostorske stopnje, kot so spin, naboj, orbitalna ureditev, sklapljajo in urejajo v nizkodimenzionalnih 

magnetnih ureditvah s frustrirano strukturo. Poleg tega, smo bili med našimi raziskavami pozorni tudi na 

zanimive fizikalne pojave, ki bi bili lahko nekoč uporabni za široko uporabo. Predvsem smo se posvetili 

sistemom, ki vsebujejo katione v takem oksidacijskem stanju, kjer imajo stereo-kemično aktiven nevezni 

elektronski par, zlasti Te4+. Prisotnost neveznega elektronskega para se odraža v zmanjšanem številu 

izmenjalnih poti med magnetnimi ioni, kar privede do tako-imenovane nizkodimenzionalne kristalne 

strukture. Poleg tega se nadejamo, da bo prisotnost neveznih elektronskih parov spodbudila težnjo 

preiskovanih sistemov k tvorbi izven-centričnih kristalnih sprememb, ki bi lahko privedle do vzpostavitve 

makroskopske električne polarizacije. 

Natančneje, cilj tega dela je raziskati vpliv neveznega elektronskega para, pripadajočega Te4+, v pred kratkim 

sintetiziranih sistemih FeTe2O5Br (16) in Ni5(TeO3)4Br2 (15). Ta dva sistema sta bila narejena po zgoraj 

predstavljenem sinteznem konceptu, ki uporablja nevezni elektronski par kot tako imenovane "kemične 

škarje". Oba sistema imata plastovito monoklinsko struktura zgrajeno iz magnetnih skupkov. V prvem 

primeru, so Fe3+ (S = 5/2) ioni povezani preko kisikovih mostov v geometrijsko frustriran [Fe4O16] skupek. V 

drugem primeru pa, so osnovni gradniki [Ni5O17Br2] enote, kjer so magnetni ioni Ni2+ (S = 1). V obeh primerih 

so skupki sestavljeni iz trikotno razporejenih magnetnih ionov, medtem ko so super-izmenjalne interakcije 

antiferromagentne (16), (15). Pričakovati je torej magnetno urejanje na več nivojih: znotraj skupkov, znotraj 

plasti, in na koncu vzpostavitev tridimenzionalne magnetne ureditve pod 11 K za FeTe2O5Br (16) in pod 29 K 

za Ni5(TeO3)4Br2 (15). Ne-nazadnje je vredno omeniti še to, da v FeTe2O5Br sistemu vse super izmenjalne 

interakcije vključujejo Te4+ katione z neveznim elektronskim parom, in na ta način tvorijo potencialni most 

med magnetno in električno prostorsko stopnjo.  
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8.2 FeTe2O5Br sistem 
FeTe2O5Br sistem je bil prvič sintetiziran leta 2006 (16). Ima plastovito strukturo in monoklinsko osnovno 

celico (glej Table 2) z izračunano gostoto 5.213 g/cm3. Plasti rastejo pravokotno na os a*, med seboj pa jih 

vežejo šibke Van der Waalsove vezi, kar namiguje na zelo šibko sklopitev med njimi (Figure 30). Izmed vrst 

ionov, ki sestavljajo kristalno strukturo FeTe2O5Br sistema, gre izpostaviti dve. Prvič, Te4+ (5s25p0) katione s 

stereo-kemično aktivnimi neveznimi elektronskimi pari, ki kot že omenjeno, v kombinaciji z ioni prehodnih 

kovin tvorijo nizko dimenzionalno strukturo. Vrhu tega pa so nevezni elektronski pari lahko nosilci električne 

polarizacije. Druga pomembna vrsta ionov so Fe3+ (3d5) kationi, s spinskim kvantnim številom S = 5/2, saj so 

odgovorni za magnetne lastnosti FeTe2O5Br sistema. Natančen pogled pokaže, da sta v kristalni strukturi dve 

kristalografsko različni Fe mesti – Fe1 in Fe2, ki pa imata obe oktaedersko [FeO6+ koordinacijo. Štiri taka 

mesta so preko skupnih kisikov izmenično povezana v [Fe4O16]
20- tetramer, ki je podoben rombu z eno 

diagonalo tako, da štiri možne izmenjalne poti potekajo po obodu (J1), ena pa veže dva nasprotna si Fe1 (J2) 

iona (Figure 31). Ker so si vsi Fe-O-Fe koti precej podobni (Table 3), so si najverjetneje podobne tudi 

izmenjalne interakcije. S strukturnega stališča so Te4+ ioni pomembni zato, ker tvorijo edini most med 

železovimi skupki, ki tvorijo trikotno ureditev znotraj plasti. Ker vse interakcije med Fe skupki potekajo preko 

Te4+ ionov, lahko pričakujemo močno sklopitev med magnetno izmenjalno interakcijo in polarizacijo neveznih 

Te4+ elektronskih parov. 

S stališča jedrske magnetne in kvadrupolne resonance (odnosno NMR in NQR), kjer smo opazovali resonanco 
81,79Br jeder je zanimiva še lokalna okolica le-teh. Tudi v tem primeru imamo dve kristalografsko različni mesti 

– Br1 in Br2. Primerjava oddaljenosti njihovih najbližjih sosedov (Te) z osnovno Te-Br vezavno razdaljo kaže, 

da je Br1 najverjetneje povezan le z Te2, preko katerega posredno čuti tudi samo en Fe1 moment. Po drugi 

strani, pa je Br2 verjetno povezan z Te4 in Te2, kar ga sklaplja z vsaj tremi železi – Fe2 in dvema Fe1, zaradi 

česar pričakujemo, da bosta NQR in NMR signala nosila veliko informacije o obnašanju Fe momentov. 

8.2.1 Magnetne lastnosti paramagnetne faze 

Izrazito nizka magnetna dimenzionalnost sistema nakazuje možnost zanimivih magnetnih lastnosti. To nas je 

spodbudilo k obsežnim raziskavam, pri katerih smo uporabili vrsto različnih eksperimentalnih tehnik kot so 

meritve magnetne susceptibilnosti s SQUID-om, elektronske spinske resonance (ESR), muonske spinske 

relaksacije, termičnega raztezka, uklon rentgenskega sevanja, dielektrične susceptibilnosti, 81,79Br jedrske 

magnetne in kvadrupolne resonance, elastičnega in neelastičnega neutronskega sipanja. 

Magnetno susceptibilnost lahko med sobno temperaturo in 100 K lepo opišemo s Curie-Weissovim 

zakonom (Figure 32, enačba 4.1), če upoštevamo diamagnetni prispevek izračunan na osnovi Pascalovih 

konstant (Table 4). Ocenjena Curie-Weissova temperatura, CW = -125 (20) K, kaže na relativno močne 

antiferromagnetne izmenjalne interakcije. Z nižanjem temperature opazim počasen odklon od Curie-

Weissovega obnašanja, pri 50 K pa se pojavi širok maksimum (Figure 32), ki je tipičen za 

nizkodimenzionalne magnetne sisteme, saj gre za odraz razvoja magnetnih korelacij kratkega dosega (npr. 

znotraj plasti). Pri nadaljnjem ohlajanju, se susceptibilnost zmanjšuje vse do TN = 10.6 K, kjer pride do jasne 

spremembe, ki odgovarja magnetnemu prehodu. Pod TN postane izrazitejša tudi anizotropija sistema, saj 

susceptibilnost vzdolž b osi rahlo naraste, medtem ko v preostalih dveh smereh še bolj izrazito pade. 

Primerjava Néelove temperature z Curie-Weissovo temperaturo, tako imenovani faktor frustracije f = |CW 

|/TN  11, nam pove, da gre v sistemu za močno magnetno frustracijo. Po drugi strani pa so Becker in ostali 

(16) opaženo odvisnost relativno dobro opisali z modelom, ki predvideva relativno močne antiferromagnetne 

interakcije znotraj Fe-tetramerov, ki so v povprečju sklopljeni s šibkejšimi ferromagnetnimi interakcijami 

(enačba 4.2-4.7). 
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Za natančnejši vpogled v magnetne anizotropije smo se zatekli k lokalnim tehnikam, v tem primeru 

elektronski spinski resonanci. Pri sobni temperaturi vidimo jasen signal, katerega intenziteta, ESR = 8.5∙10-2 

Am2/(T mol), ustreza izmerjeni magnetni susceptibilnosti. Lorentzova oblika spektralne črte je najverjetneje 

posledica zožitve zaradi močnih izmenjalnih interakcij (enačba 3.15), ki zamažejo razliko med dvema 

kristalografsko različnima Fe mestoma. Izmerjeni g-fakor, g(      ) 2.008(1), je v skladu s pričakovanimi 

vrednostmi za Fe3+ (S = 5/2), med tem ko je velika širina signala, B1/2(      ) = 54.0 mT, najverjetneje izraz 

močnih magnetnih anizotropij. To se vidi tudi iz njene izrazite kotne odvisnosti (Figure 33). Temperaturna 

odvisnost intenzitete signala se do 130 K obnaša podobno kot magnetna susceptibilnost, saj sledi Curie-

Weissovi odvisnosti z ocenjenimi vrednostmi CW = -141 (10) K in C = 39.0 (3) Am2 K/(T mol) (eff = 5.56(5) B) 

za       , v grobem pa je ta opis dober vse do 70 K. Pod to temperaturo pa je odstopanje izrazitejše. V 

nasprotju z SQUID meritvami, temperaturna odvisnost intenzitete nima širokega maksimuma pri 50 K, kar 

pripisujemo veliki širini signala in posledičnemu nenatančnemu prilagajanju enačbi 3.15. Hkrati pa je širjenje 

signala direktno povezano z razvojem magnetnih korelacij kratkega dosega, katerih obnašanje lahko ocenimo 

iz parametra H1/2ESRT (Figure 35). Ta je v čisti paramagnetni fazi praviloma temperaturno neodvisen, z 

rastjo magnetnih korelacij pa se začne spreminjati. To spremembo je v našem primeru moč zaznati pri 45 K 

(4TN), v skladu s SQUID meritvami. Močne magnetne korelacije kratkega dosega so v končni fazi odgovorne 

tudi za tako močno razširitev, ki je kriva da signala pod 20 K ne moremo več zaznati. 

Z namenom, da bi določili dejanski delež magnetnih korelacij nad in pod magnetnim prehodom smo se 

odločili izmeriti še specifično toploto sistema. Sam magnetni prehod se odraža kot očitna anomalija v 

drugače gladki temperaturni odvisnosti  (Figure 35). Za določitev dejanskega magnetnega prispevka smo 

najprej odšteli prispevek kristalne mreže, ocenjen na osnovi enačbe 3.35. Očitno se magnetni prispevek 

razteza močno nad TN, v skladu z SQUID in ESR meritvami. Kljub temu, pa celotna ocenjena entropija (enačba 

3.39) odgovarja zgolj 26 % pričakovane R ln(6) = 14.9 J /(K mol) vrednosti. To kaže, da je najverjetneje naša 

ocena mrežnega prispevka nenatančna, saj predvideva, da je magnetni prispevek nad 25 K zanemarljiv. 

Omeniti velja še to, da vse do 350 mK nismo opazili nobene druge anomalije, ki bi odgovarjala dodatnemu 

magnetnemu ali strukturnemu prehod. 

8.2.2 Nizkotemperaturna magnetno urejena faza   

Za določitev magnetne strukture, smo se odločili za eksperimente z nevtronskim sipanjem. Preliminarne 

raziskave smo naredili na praškastem izostrukturnem FeTe2O5Cl vzorcu. Iz razlike spektrov pri nizkih (T = 1.5 

K << TN) in visokih temperaturah (T = 20 K > TN) smo lahko določili lego magnetnih vrhov (Figure 36), medtem 

ko primerjava spektrov posnetih pri 100 K in 20 K kaže razpršeno sipanje (Figure 37), ki odgovarja 

magnetnemu redu kratkega dosega. Spekter magnetnih vrhov v magnetno urejeni fazi je precej zapleten 

tako, da smo lahko iz njegove analize nedvoumno določili le magnetni valovni vektor    = (1/2 0.463 0), ki 

odgovarja inkomenzurabilni magnetni strukturi. Torej je nizkotemperaturna magnetna struktura cikloidna, 

helikoidalna ali amplitudno modulirana. Za pridobitev natančnejših informacij o magnetni strukturi smo 

raziskave nadaljevali na monokristalnih vzorcih, tokrat že na FeTe2O5Br sistemu. Globoko v magnetno urejeni 

fazi (pri 1.5 K), smo izmerili intenziteto 48 magnetnih vrhov, kar pa nas žal ni pripeljalo k eni sami možni 

rešitvi magnetne strukture. Zato smo za določitev pravega modela magnetne strukture, izvedli še meritve s 

polariziranim nevtronskim sipanjem - 25 polarizacijskih matrik. Analiza vseh meritev nevtronskega sipanja 

skupaj (nepolariziranega in polariziranega) nam da en samo končno rešitev – amplitudno moduliran model 

(32), (120), kjer železove magnetne momente opišemo kot                             . Tu je       vektor, ki 

definira položaj Fe momenta v i-ti celici, S0 = 4.02(9) B je amplituda magnetne modulacije, ki je enaka za vse 

magnetne momente, kl pa so faze, ki ustrezajo posameznim Fe momentom znotraj kristalografske osnovne 
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celice (Figure 38, Table 6). Očitno je simetrija kristalne strukture višja od simetrije odkrite magnetne 

strukture, saj je slednja izgubila center inverzije. S tem pa se odpira možnost za pojav električne polarizacije. 

Za neodvisen test modela magnetne strukture, smo opravili meritve muonske spinske relaksacije (SR). Gre 

za meritve, pri katerih spremljamo precesijo muona v lokalnih magnetnih poljih. Najprej smo izmerili nabor 

muonskih relaksacijskih funkcij v šibkem prečnem magnetnem polju (Figure 40). Ta meritev nam je 

omogočila določiti delež vzorca, v katerem so magnetne korelacije (dolgega ali kratkega dosega) razvite že do 

te mere, da tam lokalna magnetna polja prevladajo nad zunanjimi. Rezultati kažejo, da so omenjene 

korelacije prisotne vse do 20 K, kar je v skladu s pričakovanim obstojem magnetnega reda kratkega dosega. 

Naslednji korak so bile meritve v odsotnosti zunanjih polj. Te nam dajo informacijo o magnetnem redu 

dolgega dosega. Prvič, pojav oscilacij v relaksacijski krivulji nam pove, kdaj se magnetni red vzpostavi in 

drugič, oblika relaksacijske krivulje skriva informacijo o samem magnetnem redu. Po pričakovanju se 

oscilacije zares pojavijo pod TN, njihovo obliko pa lahko precej dobro opišemo ob predpostavki, da imamo 

dve različni inkomenzurabilni porazdelitvi lokalnih polj. To kaže, da se muoni najverjetneje ustavljajo na dveh 

različnih kristalografskih mestih, hkrati pa potrjuje inkomenzurabilnost nizkotemperaturne magnetne 

strukture. 

Raziskave na lokalnem nivoju smo nadaljevali z meritvami 79,81Br jedrske kvadrupolne resonance (NQR). Ta 

pojav lahko opazujemo, ker imajo jedra s spinom S > 1/2 kvadrupolni moment Q, ki precesira v gradientu 

električnega polja (EFG). Slednji je tipično posledica porazdelitve elektronske gostote v okolici izbranega 

jedra. V našem primeru smo EFG izračunali za obe kristalografsko različni Br mesti na podlagi teorije 

gostotnih funkcionalov (DFT) -  Table 7, kar nam je pri znanih Q(79Br) = 31.3×10-30 m2 in Q(81Br) = 26.2×10-30m2 

(79Q/81Q = 1.19), omogočilo določitev iskane kvadrupolne frekvence Q. Natančnost izračuna se kaže v zelo 

dobrem ujemanju izmerjenih vrednosti (Table 8) z izračunanimi. Izmerjeni spektri Br1 in Br2 za oba izotopa 

pri 80 K kažejo enostavno Gaussovo obliko s šibkim širokim ozadjem, ki najverjetneje izvira iz manjše 

porazdelitve EFG vrednosti. Razmerje spektralnih širin in relaksacij za različna izotopa je obratno sorazmerno 

razmerju kvadratov njunih žiromagnetnih razmerji (79 /81)–2 = 1.162, kar kaže,da je relaksacijski mehanizem 

pretežno magneten. Z ohlajanjem, se spinsko mrežna relaksacija (1/T1) linearno zmanjšuje vse do 40 K, kjer 

se ta trend prekine. Porast 1/T1 pod 25 K, ki se konča z izrazito divergenco pri TN, povezujemo z 

vzpostavljanjem magnetnih korelacij, ki pospešijo magnetno relaksacijo v bližini faznega prehoda. 

Temperaturni odvisnosti spektrov za Br1 in Br2 sta nad magnetnim prehodom zelo podobni, saj se v obeh 

primerih Q pri ohlajanju zvišuje (Figure 43), kar odgovarja povečanju EFG-ja kot posledici krčenja osnovne 

kristalne celice. Pod prehodom, pa se oba spektra močno spremenita. Ozka paramagnetna črta izgine razvije 

pa se spekter v obliki črke U, značilen za sinusno porazdelitev lokalnih polj, tipično za inkomenzurabilne 

sisteme. Samo 0.4 K nižje se spekter ponovno spremeni. Očitno smo priča dvema zaporednima magnetnima 

prehodoma – najprej iz paramagnetne faze v visokotemperaturno inkomnezurabilno fazo (HT-ICM), ki ji sledi 

še nizkotemperaurna faza (LT-ICM). Z nadaljnjim nižanjem temperature se na Br1 in Br2 mestih razvijeta 

popolnoma različna spektra. Na mestu Br1 dobimo relativno preprosto črto v obliki črke U (Figure 44a), med 

tem ko se na mestu Br2 razvijejo tri bolj ali manj neodvisne U črte (Figure 44b). Razlika je nedvomno 

posledica različne sklopitve z železovimi momenti, t.j. sklopitve Br1 z enim Fe mestom, medtem ko je Br2 

sklopljen s tremi. Na podlagi te ugotovitve smo se lotili tudi natančnega opisa spektrov. Najprej smo EFG 

vrednosti pomnožili z 1.083 za Br1 in 0.88 za Br2, da smo prišli do točnega ujemanja Q z izračunanimi 

vrednostmi. V nadaljnjem koraku pa smo kot proste parametre vzeli hiperfine sklopitvene tenzorje med Br in 

Fe mesti, torej enega za Br1 in tri za Br2. Končno smo uspeli oba spektra relativno dobro opisati (Figure 46) s 

hiperfinimi parametri podanimi v Table 9. V LT-ICM fazi je zanimiva tudi frekvenčna odvisnost relaksacije 1/T1 

(Figure 45). V primeru Br1 se ta sklada s hipotezo, da so v območju polno razvitih magnetnih momentov (na 

robovih U spektra) osnovni vzbuditveni način fazoni, ki so energijsko »zelo poceni«, in s tem privedejo do 
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hitre relaksacije, medtem ko v območju majhnih magnetnih momentov (v centralnem delu U spektra) 

prevladujejo energijsko »dražji« amplitudoni, ki privedejo do počasnejše relaksacije. Odvisnost na mestu Br2 

je bistveno bolj komplicirana. 

Na koncu lahko rečemo, da vse uporabljene tehnike pri določanju nizkotemperaturne magnetne faze kažejo, 

da gre v LT-ICM fazi res za inkomenzurabilno amplitudno modulirano magnetno strukturo, ki zlomi 

kristalografsko simetrijo inverzije. Še več, opazili smo, da je nad LT-ICM fazo prisotna še HT-ICM faza, ki pa se 

po obliki Br1 in Br2 NQR črt zdi bolj simetrična kot LT-ICM faza. 

8.2.3 Ferroelektrični prehod in njegova povezava z magnetizmom 

Izguba simetrije inverzije v LT-ICM fazi nas je spodbudila k preučevanju obstoja električne polarizacije.  

To raziskavo smo začeli z meritvami termičnega raztezka kristala, saj pri vzpostavitvi električne polarizacije 

pričakujemo tudi rahlo spremembo kristalne mreže. Z ohlajanjem se termični razteznostni koeficient vzdolž c 

smeri, c, počasi zmanjšuje, v skladu s pričakovanim krčenjem mreže (Figure 49a). Odstopanje od tega 

trenda postane očitno pod 50 K, ko c postane negativen in pri 20 K doseže minimum, kar si razlagamo 

kot posledico vzpostavljanja magnetnega reda kratkega dosega. Med nadaljnjim ohlajanjem c spet začne 

naraščati vse do 10.6 K, kjer opazimo v temperaturni odvisnosti c ostro špico (Figure 49b). Sovpadanje le-te 

z temperaturo magnetnega prehoda nedvomno kaže, da se vzpostavitev magnetnega reda odraža tudi na 

kristalni strukturi vzorca. 

To nas je spodbudilo k natančnejšim raziskavam kristalne strukture z uklonom sinhrotronske rentgenske 

svetlobe. Pri teh meritvah smo se posvetili predvsem temperaturnemu intervalu okoli magnetnega prehoda. 

Pri ohlajanju nismo zaznali nobenih sprememb v simetriji kristalne strukture med 35 K in 5 K. Visoka kvaliteta 

meritev pa nam je omogočila tudi študijo posameznih medatomskih razdalj. Iz jasnega razloga, ker imajo Te4+ 

stereo-kemično aktivne nevezne elektronske pare, nas je najbolj zanimala temperaturna odvisnost Fe-Te 

razdalj. In res, pri TN opazimo majhno a jasno spremembo naklona v temperaturni odvisnosti le-teh, kar je 

lahko posledica premika Te4+ ionov zaradi  polarizacije njihovih neveznih elektronskih parov. 

Vsi te dokazi za odziv kristalne strukture na vzpostavitev magnetnega reda dolgega dosega govorijo v prid 

dejanskemu obstoju ferroelektrične faze. Da bi pridobili neizpodbiten dokaz, smo se odločili za izvedbo 

dielektričnih meritev. In res, temperaturna odvisnost realnega dela dielektrične konstante ´, izmerjenega v 

električnem polju vzdolž c osi, kaže ostro špico, ki točno sovpada s temperaturo magnetnega prehoda (Figure 

51a,c). Obstoj ferroelektirčne faze je potrjen še z meritvijo električne polarizacije (Figure 51c) in izmerjeno 

histerezno zanko (Figure 51b). Izmerjena polarizacija je največja vzdolž c osi, P(c) = 8.5(2) C/m2 pri 5 K, med 

tem, ko je vzdolž a* osi skoraj red velikost manjša, P(a*) = 1.0(1) C/m2 pri 5 K. Polarizacije vzdolž smeri b 

nismo uspeli zaznat. Primerjava temperaturne odvisnosti električen polarizacije P in intenzitete enega izmed 

magnetnih vrhov kaže, de je P   I0.5, kar je v nasprotju z obnašanjem v večini multiferroikov z močno 

magneto-električno sklopitvijo. To daje slutiti, da je v našem primeru za opaženo obnašanje odgovoren 

drugačen magneto-električen mehanizem, kar je najverjetneje povezano z dejstvom, da v FeTe2O5Br, za 

razliko od podobnih sistemov, vse izmenjalne interakcije potekajo preko Te4+ kationov, ki imajo nevezne 

elektronske pare. 

Femenološka razlaga magneto-električnega pojava v inkomnezurabilnih helikoidalnih in spiralnih strukturah 

je tipično podana z izrazom             ⋅            ⋅         (58), kjer     predstavlja električno polarizacijo,      

pa podmrežno magnetizacijo v vzorcu. Ta izraz za naš model magnetne strukture napove polarizacijo v a*b 

ravnini, kar je v nasprotju z eksperimentalnimi rezultati. V naslednjem koraku smo zgornji izraz razširili z 

členom    ⋅        , ki je pomemben v primeru, ko je     sestavljen iz prostorsko homogenega in moduliranega 
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prispevka (59). Ker tudi ta razširitev ne napove prave smeri polarizacije, smo magneto-električni sklopitveni 

člen izpeljali s pomočjo reprezentacijske analize. Ta nam pove, da ima prostorska grupa, kateri pripada naša 

magnetna struktura, le dva simetrijska elementa – identiteto 1 in dvoštevno vijačno os 21y – in dve možni 

ireducibilni reprezentaciji 1 in 2 (Table 10). Primerjava eksperimentalno določenih faznih zamikov med 

amplitudno moduliranimi magnetnimi valovi s faznimi zamiki, ki jih predvidevata ireducibilni reprezentaciji, 

nam pove, da je naš strukturni magnetni model kombinacija obeh ireducibilnih reprezentacij. Ob 

upoštevanju tega kot tudi simetrijskih lastnosti magnetne strukture, lahko na koncu zapišemo sklopitveni 

člen podan z enačbo 4.11. Na podlagi tega pa lahko izpeljemo tudi izraza za intenziteto magnetnih vrhov 

(enačba 4.14) in električno polarizacijo (enačba 4.15), kot funkciji amplitude magnetnih valov in njihovih 

medsebojnih faznih zamikov. Končno lahko tako ob predpostavki, da imata amplituda magnetne modulacije 

kot tudi fazni zamik temperaturno odvisnost oblike |T – TN|, opišemo nenavadno P   I0.5 odvisnost. Na 

podlagi te analize sklepamo, da je za pojav električne polarizacije ključno »drsenje« amplitudno moduliranih 

magnetnih valov, ki preko izmenjalne-skrčitve Fe-O-Te-O-Fe mostov vzbudi polarizacijo telurjevih neveznih 

elektronskih parov. 

8.2.4 Fazni diagram – meritve narejene v zunanjem magnetnem polju 

Obstoj magneto-električne sklopitve bi se moral odražati v izrazitem odzivu ferroelektričnih lastnosti na 

zunanje magnetno polje in obratno, v odzivu magnetne strukture na zunanje električno polje. Po drugi strani, 

majhna vrednost električne polarizacije kaže, da bo veliko lažje zaznati vpliv magnetnega polja. Zato smo se 

odločili za natančno študijo magnetnih in dielektričnih lastnosti v zunanjem magnetnem polju. 

Za natančno določitev faznih prehodov smo najprej opravili meritve specifične toplote v magnetnem polju 

vzdolž a* (pravokotno na kristalne plasti). Iz rezultatov (Figure 52) je jasno razvidno, da obstajata dva 

zaporedna prehoda, ki sta močno odvisna od jakosti magnetnega polja. V odsotnosti polja prehoda tako-

rekoč sovpadata; z naraščanjem polja pa temperatura visokotemperaturnega prehod raste 

nizkotemperaturnega prehoda pa pada, tako da sta ti dve pri 9 T enaki TN1 = 11.8(1) K in TN2 = 9.4(1) K.  

Magnetne lastnosti visoko- in nizkotemperaturne faze smo začeli preučevati z meritvami magnetne 

susceptibilnosti  (Figure 53). V polju vzdolž a* je izrazit le nizkotemperaturni prehod, visokotemperaturni pa 

je mogoče oceniti le zelo špekulativno iz šibkega prevoja v d/dT. V nasprotju s tem, meritve v polju vzdolž b 

osi precej nazorno kažejo oba prehoda še posebej, če pogledamo d/dT. Kot kaže se pri tej orientaciji z 

naraščajočim poljem temperatura visokotemperaturnega prehoda počasi zmanjšuje, med tem, ko je 

temperatura prehoda nizkotemperaturnega prehoda tako-rekoč konstantna. Končno pri 4 T obe 

temperaturi sovpadeta sam prehod pa postane bolj oster/izrazit, kot da bi visokotemperaturna faza izginila. 

Odziv magnetne susceptibilnosti v polju vzdolž c osi pa je spet manj nenavaden. Kljub temu, da se dobro vidi 

le en prehod, se zdi, da se z naraščajočim poljem oba prehoda premikata k višjim temperaturam. Indikacije 

visokotemperaturnega prehoda očitno govorijo v prid hipotezi iz NQR-a, da sta oba prehoda zares magnetna. 

Da bi dobili več informacije o značaju HT-ICM faze, smo nadaljevali preiskavo z lokalno tehniko – 81,79Br 

jedrsko magnetno resonanco na mestu Br2. To smo pomerili v več različnih poljih (9.4 T in 4.7 T) in več 

različnih orientacijah (        in       ). Spekter izmerjen pri 80 K in polju 9.4 T je prikazan na Figure 54. Očitno 

gre za centralni črti obeh izotopov, ki ju spremljata po dva satelita. Dvojnost vseh črt, je najverjetneje 

posledica rahlega odstopanja     od a*, ki zlomi simetrijo 21y. Zanesljivost DFT izračunov smo dodatno 

preverili z meritvami kotne odvisnosti Br2 signala, ki kaže zelo dobro ujemanje meritev z računi. 

Temperaturna odvisnost centralne črte zelo jasno ponazarja odziv magnete susceptibilnosti, kar omogoča 

jasno določitev izotropnega hiperfinega premika in posledično oceno hiperfine interakcije 0.267 T/B. 

Omeniti velja, da je ta vrednost v skladu z vrednostmi ocenjenimi iz NQR meritev. Na Figure 57 je prikazan 
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temperaturni razvoj spektrov v okolici faznih prehodov, kjer široka črta pripada satelitu 79Br2 ozka pa 

centralnemu prehodu 81Br2. Pod prvim magnetnim prehodom se spekter močno spremeni, obe črti pa 

razvijeta U obliko, kar je razvidno iz pokazane simulacije. Spekter se ponovno spremeni pod TN2, kjer pa je 

oblika črte zelo zapletena, kar kaže, da je LT-ICM faza precej bolj zapletena kot HT-ICM faza. Dodatne 

meritve pri 4.7 T kažejo podobno obnašanje (Figure 58). Tudi v tem primeru se zdi, da imajo črte v HT-ICM 

fazi U obliko. Zanimiva je še meritev temperaturne odvisnosti relaksacije, 1/T1, kjer sta oba magnetna 

prehoda zelo lepo izražena kot dve zaporedni singularnosti. Meritve v magnetnem polju vzdolž c osi so se s 

stališča prepoznavanja spektra izkazale za bolj praktične, saj v tej orientaciji lahko 81Br2 centralne prehode 

spremljamo povsem izolirano – dva črti sta posledica zloma simetrije 21y osi zaradi majhnega odstopanja     

od a*. Tu se lepo vidi, da imata obe črti v HT-ICM fazi enako obliko medtem ko se v LT-ICM fazi razlikujeta. To 

kaže na to, da je v HT-ICM fazi simetrija inverzije še prisotna, v LT-ICM fazi pa te ni več. 

Da bi določili naravo HT-ICM faze, ali je amplitudno modulirana ali gre za kakšen drugačen magneti red, smo 

se odločil za meritve nevtronskega sipanja v zunanjem magnetnem polju. Natančna meritev temperaturne 

odvisnosti intenzitete magnetnih vrhov potrdi rezultate NQR, da HT-ICM faza obstaja že pri B = 0 T. Njen 

obstoj pa je še bolj izrazit v polju vzdolž a* smeri (Figure 60b). HT-ICM faza se od LT-ICM faze izrazito loči po 

temperaturni odvisnosti intenzitete magnetnih vrhov I, saj če privzamemo, da velja odvisnost I ≈ |T – TN|2, 

dobimo  0.35(2) za HT-ICM fazo in 0.26(1) za LT-ICM fazo. Te vrednosti kritičnih eksponentov govorijo o 

tem, da ima HT-ICM tridimenzionalni značaj, LT-ICM pa dvodimenzionalnega, kar je v nasprotju z ostalimi 

rezultati. To je najverjetneje posledica tega, da I ni sorazmeren z M2, ampak je ta odvisnost zaradi 

temperaturne odvisnosti faz med magnetnimi valovi bolj komplicirana. Omeniti gre še to, da je položaj 

magnetnih vrhov v HT-ICM fazi temperaturno neodvisen, medtem ko se inkomnezurabilna vrednost 

valovnega vektorja v LT-ICM fazi razvija podobno kot intenziteta. V magnetnem polju vzdolž b osi (Figure 61), 

se jasno vidi, da se temperaturni interval HT-ICM faze s povečevanjem polja krči in pri 5 T tudi izgine, v skladu 

z magnetizacijskimi meritvami. Dodatno smo opravili še natančne meritve širin magnetnih vrhov, kar nam je 

omogočilo študijo temperaturnega razvoja magnetne korelacijske dolžine. Te rezultati (Figure 62) kažejo, da 

nad TN1 magnetni red kratkega dosega obstaja znotraj kristalnih plasti vse do 40 K. 

V nadaljevanju smo opravili še meritve temperaturne odvisnosti termičnega raztezka, ki pokažejo, da se v 

polju 6 T vzdolž c osi anomalija pri 10.5 K rahlo pomakne k višjim temperaturam (Figure 63), v skladu z 

SQUID in NMR meritvami. 

Da bi ugotovili ali gre v FeTe2O5Br sistemu res za močno magneto-električno sklopitev in kaj se dogaja z 

električno polarizacijo v HT-ICM fazi, smo opravili meritve dielektrične konstante v        v vseh treh 

orientacijah magnetnega polja (Figure 64). Te kažejo, da je električna polarizacija prisotna zgolj v LT-ICM fazi, 

kar je v skladu z NMR in NQR rezultati, ki nakazujejo, da je v HT-ICM fazi še vedno prisoten center inverzije. 

Zelo zanimivo je obnašanje v magnetnem polju vzdolž b osi, saj anomalija v dielektrični konstanti pri 4 T 

izgine. To je najverjetneje pomeni, da električna polarizacija izgine skupaj s HT-ICM fazo. Vsekakor je ta pojav 

zelo zanimiv z uporabniškega stališča, saj smo na ta način z zunanjim magnetnim poljem »ugasnili« električno 

polarizacijo v vzorcu. 

Za konec smo preiskovali še magnetne ekscitacije z neelastičnim elektronskim sipanjem, ki kažejo, da so 

Goldstonovi nihajni načini precej potlačeni in da je večina intenzitete v ekscitacijah, ki imajo energijsko režo. 

8.2.5 Povzetek 

Če povzamemo, B-T fazni diagram FeTe2O5Br sistema se sestoji iz visoko temperaturne paramagnetne faze, v 

kateri se pod 60 K (6TN) začnejo vzpostavljati magnetne korelacije kratkega dosega. Magnetni red dolgega 

dosega se vzpostavi pod TN1, ko sistem preide v inkomenzurabilno HT-ICM fazo. Temu prehodu hitro (1 K 
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nižje – odvisno od jakost magnetnega polja) sledi prehod v LT-ICM fazo, kjer inkomenzurabilna amplitudno 

modulirana magnetna struktura, odstrani center inverzije in vzbudi makroskopsko električno polarizacijo. Ta  

pojav pripisujemo delovanju izmenjalne-skrčitve Fe-O-Te-O-Fe izmenjalnih poti, ki privede do polarizacije 

telurjevih neveznih elektronskih parov. Z zunanjim poljem lahko močno vplivamo na temperaturo faznih 

prehodov, in v primeru ko je polje vzdolž b osi večje od 4 T tudi »ugasnemo« električno polarizacijo. Naši 

rezultati kažejo, da se splača iskati nove magneto-električne multiferoike med M-T-O-X spojinami (M = Cu, 

Ni, Fe, X = Cl, Br, I, T = Te, Se, Sb, Bi, Pb), saj pogosto združujejo prisotnost magnetne frustracije in neveznih 

elektronskih parov. 

8.3 Ni5(TeO3)4Br2 sistem 
Odkritje magneto-električne sklopitve v FeTe2O5Br sistemu, nas je spodbudilo k raziskavam Ni5(TeO3)4Br2 

sistema, ki je plod istega sinteznega koncepta ter kaže podobne strukturne lastnosti. Prav tako ima 

Ni5(TeO3)4Br2 sistem plastovito strukturo in monoklinsko osnovno celico, pripadajočo prostorski grupi C2/c, ki 

ima tako kot FeTe2O5Br simetrijo inverzije. Znotraj osnovne celice so tri kristalografsko različna Ni2+ (S = 1) 

magnetna mesta, od katerih imata Ni1 in Ni2 oktaedrsko koordinacijo z kisikovimi ioni, Ni3 pa je povezan z 

petimi kisikovimi in enim bromovim ionom. Ni ioni so preko kisikov povezani v [Ni5O17Br2] enoto, ki jo 

sestavljata dva trikotnika, stikajoča se v Ni1 (Figure 68). Te enote so preko svojih O2- ionov povezane v NiO 

plasti, ki so ločene s Te4+ in Br- ioni.  

8.3.1 Magnetne lastnosti v nizkih magnetnih poljih 

Temperaturna odvisnost magnetne susceptibilnosti na Figure 69a,b kaže, da njeno obnašanje pri visokih 

temperaturah (< 80 K) lahko opišemo z Curie-Weissovim zakonom (enačba 4.1), sCW = −44(5) K in C = 75(2) 

Am2K/mol T. Dobljena konstanta ustreza efektivnemu magnetnemu momentu eff = 3.45(5) B, kar za S = 1 

sistem odgovarja g-faktorju g = 2.35, v skladu z predhodnimi meritvami (135), (15). Pri TN = 29 K je opaziti 

anomalijo, ki ustreza prehodu v magnetno urejeno stanje. Pod prehodom pride do izrazite razlike med 

meritvami pri        ,      b in      c, kar kaže na močno anizotropijo sistema. Iz natančne meritve kotne 

odvisnosti v urejeni fazi (Figure 69c) lahko določimo celo približno orientacijo magnetnih momentov, saj 

vzdolž njih pričakujemo najmanjšo, pravokotno na njih pa največjo magnetno susceptibilnost. Tako dobimo, 

da momenti ležijo v ac ravnini, zamaknjeni približno 30° od a* proti c osi. Na koncu velja pogledati še 

razmerje |TN/CW|, ki kaže na bistveno nižjo stopnjo magnetne frustracije, kot v FeTe2O5Br v sistemu.  

Magnetno strukturo urejene faze, smo določili iz meritev nevtronskega sipanja. Izkaže se, da je 

nizkotemperaturna (5 K) magnetna struktura dvodimenzionalna, z nagnjenimi magnetnimi momenti (Figure 

70a). Njena simetrija ohranja center inverzije, kar onemogoča pojav makroskopske električne polarizacije. 

Zanimivo je tudi različno obnašanje temperaturne odvisnosti magnetnih vrhov (Figure 70b), ki odgovarjajo 

med seboj pravokotnim komponentam magnetih momentov, kar nakazuje spreminjanje orientacije 

momentov. Na primer (-203) vrh kaže A(1 −T/TN)2 obnašanje z  = 0.25(1), ki ustreza kritičnemu eksponentu 

za plastovite trikotne antiferromagnetne sisteme (137), med tem ko ima (-201) vrh bistveno bolj skokovito 

odvisnost. Dodatne meritve intenzitet magnetnih vrhov pri 15 K pa kažejo celo, da se na različnih Ni mestih 

magnetni momenti obnašajo različno.  

8.3.2 Meritve v magnetnem polju 

Občutljivost frustriranih sistemov na zunanje motnje nas je spodbudila k raziskavam vpliva zunanjega 

magnetnega polja. Za to smo uporabili naslednje tehnike: meritve specifične toplote, magnetizacije in 

magnetnega navora.  

Temperaturna odvisnost specifične toplote, Cp, jasno kaže ostro špico pri TN (Figure 71a).  Magnetni 

prispevek, Cmag, ki ga dobimo po odštevanju ocenjenega mrežnega prispevka Clatt (enačba 3.35), ima dobršen 
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del tudi nad TN (Figure 71b). To potrjuje izračunana entropija, saj se skoraj 30 % celotne vrednost, ki se sicer 

ujema z pričakovano vrednostjo 5R ln(2S +1) = 45.7 J /(K mol), razvije šele nad TN (Figure 71d). S tem pa tudi 

jasno kaže na prisotnost magnetnih korelacij kratkega dosega nad TN in posledično potrjuje izrazito 

dvodimenzionalnost sistema. Zunanje magnetno polje vzdolž a* osi, ki ne vpliva na TN, se izrazito pozna v 

odvisnosti pod 15 K (Figure 71b), ki pa jo pripisujemo spremembi orientacije magnetnih momentov, opaženi 

že pri nevtronskem sipanju. 

Magnetni odziv smo še bolj natančno sledili z meritvami kompletnega odziva magnetizacije na zunanje polje. 

To smo dosegli tako, da smo standardne meritve magnetizacije, ki merijo odziv magnetizacije vzdolž 

magnetnega polja -          (Ma*), dopolnili z meritvami magnetnega navora, saj smo iz teh lahko dodatno 

ocenili odziv še v pravokotnih smereh -         (Mb) in         (Mc). Pri nizkih temperaturah (1.5 K) temperaturna 

odvisnost dMa*/dB kaže jasen vrh pri 11 T (Figure 72). Ta odgovarja spremembi smeri magnetnih 

momentov oz. tako-imenovanemu spinskemu preskoku (spin-flop), ki mu bomo zaradi ne povsem ostre 

oblike v našem primeru raje rekli »blagi spinski preskok«. Z višanjem temperature pa ta prehod postaja še 

manj izrazit. Podoben odziv smo opazili tudi za Mb in Mc, le da je odziv pri Mb bolj oster. Poleg tega lahko iz 

temperaturne odvisnosti Mc vidimo, da je temperatura Néelovega prehoda povsem neodvisna od polja. 

Zanimivo je še to, da Néelov prehod v Mb sploh ni opazen, kar je najverjetneje posledica lege magnetnih 

momentov v ac ravnini. 

8.3.3 Meritve antiferromagnetne resonance 

Z namenom, da bi določili osnovne člene v spinskem Hamiltonianu, smo opravili magnetno resonančne 

meritve v območju od 10 do 550 GHz v poljih do 15 T. Signala paramagnetne resonance nismo uspeli zaznati, 

kar je najverjetneje posledica izjemno širokega signala. Antiferromagnetno resonanco pa smo lahko zaznali 

šele pod 15 K, precej pod TN = 29 K (Figure 74a), ki ga pri Larmorjevi frekvenci L = 324 GHz opazimo pri polju 

5.05 T vzdolž a*. Pri nadaljnjem ohlajanju, se ta izrazito oži - z 1.8 T pri 15 K na 0.07(1) T pri 1.5 K, njegov 

položaj pa se tudi rahlo spreminja (Figure 74b). Opažena zožitev signala je sorazmerna s T2.8 in je 

najverjetneje posledica magnonskega sipanja, medtem ko je odvisnost resonančnega polja najverjetneje 

posledica spreminjanja orientacije magnetnih momentov. 

V naslednjem koraku smo se posvetili odvisnosti resonančnega polja od zunanjega magnetnega polja pri 

nizkih temperaturah (4 K). V skladu s pričakovano odvisnostjo za antiferromagnente sistem, opaženo tudi v 

izostrukturnem Ni5(TeO3)4Cl2 sistemu (56), se resonančna frekvenca z naraščajočim poljem (       ) najprej 

zmanjšuje od 450 GHz pri 0.7 T do 80 GHz pri 10.7 T, potem pa začne naraščati (Figure 75a). Ta prevoj, je 

jasen indikator blagega spinskega preskoka, kar je v skladu z meritvami magnetizacije. Poleg tega gre 

poudariti, da smo pri 550 GHz in polju 0.7 T opazili tudi naslednji resonančni način. Razlika med osnovnim 

in drugim resonančnim načinom v odsotnosti polja kaže, da so poleg anizotropije kristalnega polja, tipično 

odgovorne za končno vrednost osnovnega resonančnega načina, prisotne tudi anizotropije izmenjalne 

interakcije (npr. Dzyaloshinsky-Moriya ali anizotropna izmenjalna interakcija). 

Dodatno smo izmerili še kotno odvisnost resonančnega polja pri izbrani Larmorjevi frekvenci 240 GHz (Figure 

75b). Opazimo lahko, da je kotna odvisnost veliko močnejša, ko smo polje vrteli znotraj a*b kot v primeru 

rotacije v ac ravnini, kar je v skladu z magnetno susceptibilnostjo, kjer je razlika med odzivom vzdolž a* in b 

smermi bistveno večja kot med a* in c smermi. 

8.3.4 Izračuni 

Da bi dejansko prišli do členov, ki sestavljajo spinski Hamiltonjan Ni5(TeO3)4Br2 sistema, smo se odločili 

eksperimentalne rezultate opisati z modelom molekularnega polja (enačbe 5.3-5.7), kjer smo upoštevali 

izotropno in anizotropno izmenjalno interakcijo, anizotropije kristalnega polja, antisimetrično Dzyaloshinsky-
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Moriya izmenjalno interakcijo in seveda tudi vpliv zunanjega magnetnega polja. Na osnovi magnetne 

strukture, smo v obzir vzeli 10 magnetnih podmrež, ki pripadajo Ni mestom označenim na Figure 68a. Zaradi 

očitno velikega števila prostih parametrov – šest različnih izmenjalnih interakcij (z vsemi anizotropijami) in tri 

različne anizotropije (tenzorji), smo se odločili število le-teh zmanjšati. V ta namen smo na osnovi modela, ki 

upošteva prekrivanje orbital (angular overlp model - AOM) in pomočjo programa LIGFIELD (146) izračunali 

anizotropije kristalnega polja za vsa tri Ni mesta (Table 16). Narava tega izračuna je taka, da so njegove 

ocene anizotropije dobre, medtem ko je njihova absolutna velikost relativno slabo določena. V naslednjem 

koraku smo skrčili število različnih izmenjalnih poti na štiri, saj znotraj našega modela ne moremo ločiti 

različnih interakcij, ki potekajo med istimi podmrežami. 

Za izračun parametrov modela molekularnega polja, smo simulirali izmerjene vrednosti kotne odvisnosti 

magnetizacije, orientacije magnetnih momentov določenih iz nevtronskega sipanja, kot tudi odvisnosti 

antiferromagnetne resonance od orientacije in jakosti magnetnega polja. Rezultati računov, so predstavljeni 

v Table 17, primerjava z meritvami pa je ponazorjena z rdečimi črtami na Figure 69c, Figure 75a in Figure 

75b. Opaziti je, da pomembno vlogo igrajo anizotropije, med katerimi je še posebej izrazita anizotropija 

izmenjalnih interakcij, ki je najverjetneje posledica znatnega prispevka elektronske orbitalne vrtilne količine. 

Precej močne anizotropije kristalnega polja na Ni mestih pa so posledica nesimetrične razporeditve sosednjih 

kisikovih ionov. Ob upoštevanju izračunanih parametrov molekularni model napoveduje prehod v novo 

magnetno fazo pri 24 T (Figure 77), za katero pa je značilno, da nima centra inverzije s čimer odpira 

možnost za nastanek električne polarizacije. Še več, ob privzeti temperaturni odvisnosti podmrežne 

magnetizacije (enačba 5.8) lahko kvantitativno opišemo tudi pomik blagega spinskega preskoka k nižjim 

poljem s padajočo temperaturo.  

8.3.5 Povzetek 

Na sliki Figure 76 kažemo celoten B-T fazni diagram Ni5(TeO3)4Br2 sistema. Z ohlajanjem sistem pri TN = 29 K 

preide v planarno magnetno urejeno fazo z rahlo nagnjeni magnetnimi momenti, katerih orientacija se ustali 

šele pri nizkih temperaturah. Z povečevanjem zunanjega magnetnega polja vzdolž a* smeri – pravokotno na 

kristalne ravnine, sistem pri 11 T doživi blag spinski preskok, ki mu po napovedih računov sledi izrazitejši 

spinski preskok pri 24 T. Za razliko od magnetne ureditve pri nizkih poljih napovedana faza v visokih poljih 

izgubi center inverzije, kar potencialno omogoči pojav električne polarizacije. Širše območje blagega 

spinskega prehoda na Figure 76 označuje interval vrednosti magnetnega polja pri eksperimentalni 

negotovosti orientacije kristala za 5°. Zanimivo, v nasprotju s trendom, ki ga kaže blagi spinski preskok, se 

magnetno polje predvidenega spinskega preskoka (pri 24 T) med ohlajanjem povečuje. Omeniti gre še 

pojav magnetnega reda kratkega dosega, katerega efekti so opazni vse do 2TN. 

Na koncu velja izpostaviti pomen magnetnih anizotropij, ki so ključne za opisan fazni diagram. Gre za to, da 

magnetne anizotropije prevladajo nad geometrijsko frustracijo in s tem omogočijo sistemu, da pri nizkih 

temperaturah vzpostavi magnetno urejeno stanje.   

8.4 Končne ugotovitve 
V našem delu smo preučevali vpliv magneten frustracije na osnovno magnetno stanje dvodimenzionalnih 

sistemov magnetnih skupkov s trikotno geometrijo, ki vsebujejo katione z neveznimi elektronskimi pari, in 

raziskovali njihove magnetne in električne lastnosti. Cilj je bil ugotoviti, če inkorporacija omenjenih kationov 

v izmenjalne poti med magnetnimi ioni lahko pripelje do izmenjalne-skrčitve in posledične magneto-

električne sklopitve. To študijo smo izvedli na dveh modelskih sistemih, t.j. FeTe2O5Br in Ni5(TeO3)4Br2, ki 

ustrezata omenjenim strukturnim zahtevam. V toku teh raziskav in z željo, da bi oba sistema kar se da dobro 
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preučili, smo uporabili številne eksperimentalne metode, vključujoč makroskopske meritve, sipalne in 

lokalne tehnike. 

Glavni rezultat naše raziskave je nedvomno spoznanjem, da je FeTe2O5Br sistem multiferroik, v katerem je za 

pojav električne polarizacije odgovorna vzpostavitev inkomenzurabilnega amplitudno moduliranega 

magnetnega reda dolgega dosega (32). Natančno spremljanje temperaturne odvisnosti kristalne strukture 

kaže, da nastanek električne polarizacije spremlja premik neveznih elektronskih parov Te4+. To potrjuje 

hipotezo, da je električna polarizacija res rezultat izven-centričnih strukturnih sprememb, ki so posledica 

premika neveznih elektronskih parov. Kot razlago opaženega, predlagamo nov mehanizem magneto-

električno sklopitve, ki vključuje izmenjalno-skrčitev, do katere pride zaradi drsenja sosednjih 

inkomenzurablinih amplitudno moduliranih magnetnih valov. S tem se zlomi tudi simetrija inverzije, kar 

odpre možnost za pojav makroskopske električne polarizacije. Meritve v zunanjem magnetnem polju, so nam 

razkrile, da obstaja tik nad multiferroično fazo še visokotemperaturna inkomenzurabilna magnetna faza, kjer 

pa električna polarizacija ni bila opažena. To najverjetneje pomeni, da ta faza še ohranja center inverzije. Še 

več, direkten dokaz močne magneto-električne sklopitve predstavlja opaženo izginotje električne polarizacije 

v nizkotemperaturni fazi pri dovolj velikem zunanjem magnetnem polju (4 T) vzdolž inkomenzurabilne 

smeri (33). Z drugimi besedami, odkrili smo, da lahko električno polarizacijo v FeTe2O5Br sistemu z dovolj 

velikim magnetnim poljem »izklopimo«, kar pa je zelo zanimivo s stališča uporabe v novih spintronskih 

napravah. Očitno FeTe2O5Br sistem predstavlja nov razred multiferroičnih spojin in razširja močno magneto-

električno sklopitev, do sedaj odkrito le v komenzurabilnih ali inkomnezurabilnih helikoidalnih/spiralnih 

magnetnih strukturah, tudi na inkomenzurabilno amplitudno modulirane strukture. To odkritje občutno 

poveča obseg kandidatov za močan magneto-električni efekt pri sobni temperaturi, ki je bistven s širšega 

uporabniškega stališča. 

Po drugi strani, preiskava Ni5(TeO3)4Br2 sistema razkriva, da ima le-ta manj zapleteno magnetno strukturo, ki 

tudi ohranja simetrijo inverzije kristalne mreže. S tem pa je izključena tudi možnost za pojav makroskopske 

električne polarizacije. Opis kotne in poljske odvisnosti antiferromagnetne resonance na osnovi modela 

molekularnega polja kaže, da je nižja raven magnetne frustracije in enostavnejša magnetna struktura 

najverjetneje rezultat močnih magnetnih anizotropij. Poleg tega smo odkrili, da magnetno polje pravokotno 

na kristalne plasti povzroči blag spinski preskok (spin-flop) pri približno 10 T. Izračuni na osnovi 

molekularnega polja, ob predpostavki ocenjenih magnetnih anizotropij, napovedujejo še en podoben prehod 

pri 24 T. Zanimivo je, da predvidena magnetna struktura te faze nima več centra inverzije in tako odpira 

možnosti za vzpostavitev feroelektrične ureditve. 

Skratka, naše raziskave so v skladu z delovno hipotezo, ki trdi, da lahko nizkodimenzionalni magnetni sistemi 

zares razvijejo zapletene magnetne strukture in da so nevezni elektronski pari v teh sistemih najverjetnejši 

nosilci električne polarizacije. Poleg tega, tekmovanje med magnetno frustracijo in magnetnimi 

anizotropijami privede do bogatih faznih diagramov, ki so sestavljeni iz številnih zanimivih faz. Ti ugotovitvi 

sta nam spodbuda za nadaljnje iskanje zanimivih magnetnih pojavov na področju nizkodimenzionalnih 

geometrijsko frustriranih magnetnih materialov, ki vsebujejo nevezne elektronske pare, npr. med M-T-O-X 

spojinami (M = Cu, Ni, Fe, X = Cl, Br, I, T = Te, Se, Sb, Bi, Pb), saj te pogosto združujejo prisotnost magnetne 

frustracije in neveznih elektronskih parov. 
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